
SAND2001-3514
Unlimited Release

Updated April 2003
Updated July 2004

Updated December 2004

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis

Version 3.3 Developers Manual

Michael S. Eldred, Laura P. Swiler, David M. Gay, Shannon L. Brown
Optimization and Uncertainty Estimation Department

Anthony A. Giunta
Validation and Uncertainty Quantification Processes Department

William E. Hart, Jean-Paul Watson
Discrete Algorithms and Math Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flex-
ible and extensible interface between simulation codes and iterative analysis methods. DAKOTA con-
tains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification
with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least
squares methods; and sensitivity/variance analysis with design of experiments and parameter study meth-
ods. These capabilities may be used on their own or as components within advanced strategies such as
surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty.
By employing object-oriented design to implement abstractions of the key components required for itera-
tive systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment
for design and performance analysis of computational models on high performance computers.

This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class
hierarchies and their interrelationships. It derives directly from annotation of the actual source code and
provides detailed class documentation, including all member functions and attributes.

Contents

1 DAKOTA Developers Manual 7

1.1 Introduction . 7

1.2 Overview of DAKOTA . 7

1.3 Services . 11

1.4 Additional Resources . 12

2 DAKOTA Namespace Index 13

2.1 DAKOTA Namespace List . 13

3 DAKOTA Hierarchical Index 15

3.1 DAKOTA Class Hierarchy . 15

4 DAKOTA Class Index 19

4.1 DAKOTA Class List . 19

5 DAKOTA File Index 23

5.1 DAKOTA File List . 23

6 DAKOTA Page Index 25

6.1 DAKOTA Related Pages . 25

7 DAKOTA Namespace Documentation 27

7.1 . 27

8 DAKOTA Class Documentation 49

8.1 AllMergedVarConstraints Class Reference . 49

8.2 AllMergedVariables Class Reference . 52

8.3 AllVarConstraints Class Reference . 56

8.4 AllVariables Class Reference . 59

8.5 AnalysisCode Class Reference . 63

8.6 Analyzer Class Reference . 66

6 CONTENTS

8.7 ANNSurf Class Reference . 70

8.8 ApplicationInterface Class Reference . 72

8.9 Approximation Class Reference . 83

8.10 ApproximationInterface Class Reference . 88

8.11 Array Class Template Reference . 91

8.12 BaseConstructor Struct Reference . 95

8.13 BaseVector Class Template Reference . 96

8.14 BiStream Class Reference . 100

8.15 BoStream Class Reference . 103

8.16 BranchBndStrategy Class Reference . 106

8.17 COLINApplication Class Template Reference . 108

8.18 COLINOptimizer Class Template Reference . 111

8.19 ColinPoint Class Reference . 114

8.20 CommandLineHandler Class Reference . 115

8.21 CommandShell Class Reference . 117

8.22 ConcurrentStrategy Class Reference . 119

8.23 CONMINOptimizer Class Reference . 122

8.24 CtelRegexp Class Reference . 129

8.25 DataInterface Class Reference . 131

8.26 DataMethod Class Reference . 136

8.27 DataResponses Class Reference . 146

8.28 DataStrategy Class Reference . 149

8.29 DataVariables Class Reference . 153

8.30 DDACEDesignCompExp Class Reference . 159

8.31 DirectFnApplicInterface Class Reference . 162

8.32 DOTOptimizer Class Reference . 166

8.33 ErrorTable Struct Reference . 170

8.34 ForkAnalysisCode Class Reference . 171

8.35 ForkApplicInterface Class Reference . 173

8.36 FSUDesignCompExp Class Reference . 176

8.37 FunctionCompare Class Template Reference . 179

8.38 FundamentalVarConstraints Class Reference . 180

8.39 FundamentalVariables Class Reference . 184

8.40 GetLongOpt Class Reference . 189

8.41 Graphics Class Reference . 193

8.42 GridApplicInterface Class Reference . 196

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

CONTENTS 7

8.43 HermiteSurf Class Reference . 198

8.44 HierLayeredModel Class Reference . 200

8.45 Interface Class Reference . 205

8.46 Iterator Class Reference . 211

8.47 JEGAEvaluator Class Reference . 218

8.48 JEGAOptimizer Class Reference . 223

8.49 KrigApprox Class Reference . 227

8.50 KrigingSurf Class Reference . 235

8.51 LayeredModel Class Reference . 237

8.52 LeastSq Class Reference . 243

8.53 List Class Template Reference . 245

8.54 MARSSurf Class Reference . 249

8.55 Matrix Class Template Reference . 251

8.56 MergedVarConstraints Class Reference . 253

8.57 MergedVariables Class Reference . 256

8.58 Minimizer Class Reference . 260

8.59 Model Class Reference . 264

8.60 MPIPackBuffer Class Reference . 282

8.61 MPIUnpackBuffer Class Reference . 285

8.62 MultilevelOptStrategy Class Reference . 288

8.63 NestedModel Class Reference . 291

8.64 Nl2Misc Struct Reference . 298

8.65 NL2SOLLeastSq Class Reference . 299

8.66 NLSSOLLeastSq Class Reference . 302

8.67 NoDBBaseConstructor Struct Reference . 304

8.68 NonD Class Reference . 305

8.69 NonDLHSSampling Class Reference . 308

8.70 NonDOptStrategy Class Reference . 310

8.71 NonDPCESampling Class Reference . 312

8.72 NonDReliability Class Reference . 314

8.73 NonDSampling Class Reference . 323

8.74 NPSOLOptimizer Class Reference . 327

8.75 Optimizer Class Reference . 330

8.76 ParallelConfiguration Class Reference . 333

8.77 ParallelLevel Class Reference . 335

8.78 ParallelLibrary Class Reference . 338

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8 CONTENTS

8.79 ParamResponsePair Class Reference . 348

8.80 ParamStudy Class Reference . 351

8.81 ProblemDescDB Class Reference . 354

8.82 PStudyDACE Class Reference . 360

8.83 Response Class Reference . 363

8.84 ResponseRep Class Reference . 367

8.85 RespSurf Class Reference . 372

8.86 rSQPOptimizer Class Reference . 374

8.87 SGOPTApplication Class Reference . 376

8.88 SGOPTOptimizer Class Reference . 378

8.89 SingleMethodStrategy Class Reference . 382

8.90 SingleModel Class Reference . 384

8.91 SNLLBase Class Reference . 387

8.92 SNLLLeastSq Class Reference . 390

8.93 SNLLOptimizer Class Reference . 394

8.94 SOLBase Class Reference . 400

8.95 SortCompare Class Template Reference . 403

8.96 Strategy Class Reference . 404

8.97 String Class Reference . 409

8.98 SurrBasedOptStrategy Class Reference . 411

8.99 SurrLayeredModel Class Reference . 417

8.100SurrogateDataPoint Class Reference . 422

8.101SysCallAnalysisCode Class Reference . 424

8.102SysCallApplicInterface Class Reference . 426

8.103TaylorSurf Class Reference . 428

8.104VarConstraints Class Reference . 430

8.105Variables Class Reference . 436

8.106VariablesUtil Class Reference . 443

8.107Vector Class Template Reference . 445

9 DAKOTA File Documentation 449

9.1 keywordtable.C File Reference . 449

9.2 main.C File Reference . 450

9.3 restart_util.C File Reference . 451

10 Interfacing with DAKOTA as a Library 455

10.1 Introduction . 455

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

CONTENTS 9

10.2 Problem database populated through input file parsing . 456

10.3 Problem database populated through external means . 457

10.4 Instantiating the strategy . 457

10.5 Defining the direct application interface . 458

10.6 Executing the strategy . 459

10.7 Retrieving data after a run . 459

10.8 Summary . 460

11 Performing Function Evaluations 461

11.1 Synchronous function evaluations . 461

11.2 Asynchronous function evaluations . 461

11.3 Analyses within each function evaluation . 462

12 Recommended Practices for DAKOTA Development 463

12.1 Introduction . 463

12.2 Style Guidelines . 463

12.3 File Naming Conventions . 465

12.4 Class Documentation Conventions . 466

13 Instructions for Modifying DAKOTA’s Input Specification 467

13.1 Modify dakota.input.spec . 467

13.2 Rebuild IDR . 468

13.3 Update keywordtable.C in $DAKOTA/src . 468

13.4 Update ProblemDescDB.C in $DAKOTA/src . 468

13.5 Update Corresponding Data Classes . 471

13.6 Use get_ � data_type � () Functions . 471

13.7 Update the Documentation . 472

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 1

DAKOTA Developers Manual

Author:
Michael S. Eldred, Anthony A. Giunta, Laura P. Swiler, Steven F. Wojtkiewicz, Jr., William E. Hart,
Jean-Paul Watson, David M. Gay, Shannon L. Brown

1.1 Introduction

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexi-
ble, extensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods, uncertainty quantification with sampling, reli-
ability, and stochastic finite element methods, parameter estimation with nonlinear least squares methods,
and sensitivity/variance analysis with design of experiments and parameter study capabilities. These ca-
pabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible problem-solving environment as well as a platform for
rapid prototyping of new solution approaches.

The Developers Manual focuses on documentation of the class structures used by the DAKOTA system.
It derives directly from annotation of the actual source code. For information on input command syntax,
refer to the Reference Manual, and for a tour of DAKOTA features and capabilities, refer to the Users
Manual.

1.2 Overview of DAKOTA

In the DAKOTA system, the strategy creates and manages iterators and models. In the simplest case, the
strategy creates a single iterator and a single model and executes the iterator on the model to perform a
single study. In a more advanced case, a hybrid optimization strategy might manage a global optimizer
operating on a low-fidelity model in coordination with a local optimizer operating on a high-fidelity model.
And on the high end, a surrogate-based optimization under uncertainty strategy would employ an uncer-
tainty quantification iterator nested within an optimization iterator and would employ truth models layered

file:../html-ref/index.html

12 DAKOTA Developers Manual

within surrogate models. Thus, iterators and models provide both stand-alone capabilities as well as build-
ing blocks for more sophisticated studies.

A model contains a set of variables, an interface, and a set of responses, and the iterator operates on
the model to map the variables into responses using the interface. Each of these components is a flexible
abstraction with a variety of specializations for supporting different types of iterative studies. In a DAKOTA
input file, the user specifies these components through strategy, method, variables, interface, and responses
keyword specifications.

The use of class hierarchies provides a clear direction for extensibility in DAKOTA components. In each of
the various class hierarchies, adding a new capability typically involves deriving a new class and providing
a small number of virtual function redefinitions. These redefinitions define the coding portions specific
to the new derived class, with the common portions already defined at the base class. Thus, with a small
amount of new code, the existing facilities can be extended, reused, and leveraged for new purposes.

The software components are presented in the following sections using a top-down order.

1.2.1 Strategies

Class hierarchy: Strategy.

Strategies provide a control layer for creation and management of iterators and models. Specific strategies
include:

� SingleMethodStrategy: the simplest strategy. A single iteratoris run on a single model to perform a
single study.

� MultilevelOptStrategy: hybrid optimization using a succession of iterators employing a succession
of models of varying fidelity. The best results obtained are passed from one iterator to the next.

� SurrBasedOptStrategy: surrogate-based optimization. Employs a single iterator with a
LayeredModel (either data fit or hierarchical). A sequence of approximate optimizations is per-
formed, each of which involves build, optimize, and verify steps.

� NonDOptStrategy: optimization under uncertainty (OUU). Employs a single optimization iterator
with a NestedModel. This NestedModel contains a sub-iterator and sub-model for performing uncer-
tainty quantifications. In OUU approaches involving surrogates, NestedModels and LayeredModels
can be chained together in a variety of ways using recursion in sub-models.

� BranchBndStrategy: mixed integer nonlinear programming using the PICO library for parallel
branch and bound. Employs a single iterator with a single model, but runs multiple instances of
the iterator concurrently for different variable bounds within the model.

� ConcurrentStrategy: two similar algorithms are available: (1) multi-start iteration from several dif-
ferent starting points, and (2) pareto set optimization for several different multiobjective weightings.
Employs a single iterator with a single model, but runs multiple instances of the iterator concurrently
for different settings within the model.

1.2.2 Iterators

Class hierarchy: Iterator.

The iterator hierarchy contains a variety of iterative algorithms for optimization, uncertainty quantifica-
tion, nonlinear least squares, design of experiments, and parameter studies. The hierarchy is divided into
Minimizer and Analyzer algorithms. The Minimizer classes include:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

1.2 Overview of DAKOTA 13

� Optimization: Optimizer provides a base class for the DOTOptimizer, CONMINOptimizer,
NPSOLOptimizer, rSQPOptimizer, and SNLLOptimizer gradient-based optimization libraries and
the SGOPTOptimizer, COLINOptimizer, and JEGAOptimizer nongradient-based optimization li-
braries.

� Parameter estimation: LeastSq provides a base class for NL2SOLLeastSq, a least-squares solver
based on NL2SOL, SNLLLeastSq, a Gauss-Newton least-squares solver, and NLSSOLLeastSq, an
SQP-based least-squares solver.

and the Analyzer classes include:

� Uncertainty quantification: NonD provides a base class for NonDReliability and NonDSampling.
NonDSampling is then further specialized with the NonDLHSSampling class for latin hypercube
and Monte Carlo sampling and the NonDPCESampling class for polynomial chaos expansions.

� Parameter studies and design of experiments: PStudyDACE provides a base class for ParamStudy,
which provides capabilities for directed parameter space interrogation, and DDACEDesignCompExp
and FSUDesignCompExp, which provide for parameter space exploration through design and anal-
ysis of computer experiments. NonDLHSSampling from the uncertainty quantification branch also
supports a design of experiments mode.

1.2.3 Models

Class hierarchy: Model.

The model classes are responsible for mapping variables into responses when an iterator makes a function
evaluation request. There are several types of models, some supporting sub-iterators and sub-models for
enabling layered and nested relationships. When sub-models are used, they may be of arbitrary type so that
a variety of recursions are supported.

� SingleModel: variables are mapped into responses using a single Interface object. No sub-iterators
or sub-models are used.

� LayeredModel: variables are mapped into responses using an approximation. The approximation
is built and/or corrected using data from a sub-model (the truth model) and the data may be ob-
tained using a sub-iterator (a design of experiments iterator). LayeredModel has two derived classes:
SurrLayeredModel for data fit surrogates and HierLayeredModel for hierarchical models of varying
fidelity. The relationship of the sub-iterators and sub-models is considered to be "layered" since they
are not used as part of every response evaluation on the top level model, but rather used periodically
in surrogate update and verification steps.

� NestedModel: variables are mapped into responses using a combination of an optional Interface and
a sub-iterator/sub-model pair. The relationship of the sub-iterators and sub-models is considered
to be "nested" since they are used to perform a complete iterative study as part of every response
evaluation on the top level model.

1.2.4 Variables

Class hierarchy: Variables.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

14 DAKOTA Developers Manual

The Variables class hierarchy manages design, uncertain, and state variable types for continuous and dis-
crete domain types. This hierarchy is specialized according to various views of the data.

� FundamentalVariables: both variable and domain type distinctions are retained, i.e. separate arrays
for design, uncertain, and state variables types and for continuous and discrete domains.

� AllVariables: variable types are combined and domain type distinction is retained, i.e. design, uncer-
tain, and state variable types combined into a single continuous variables array and a single discrete
variables array.

� MergedVariables: variable type distinction is retained and domain types are combined, i.e. continu-
ous and discrete variables merged into continuous arrays (integrality is relaxed) for design, uncertain,
and state variable types.

� AllMergedVariables: both variable and domain types are combined, i.e. design, uncertain, and state
variable types combined (all) and continuous and discrete domain types combined (merged). The
result is a single array of continuous variables.

The variables view that is chosen depends on the type of iterative study. For design optimization
and uncertainty quantification, for example, variable and domain type distinctions are important and a
FundamentalVariables view is used. For parameter studies and design of experiments, however, the vari-
able type distinctions can be ignored and an AllVariables view is used. Finally, the branch and bound
strategy relies on relaxation of integrality so that continuous optimizers may be used for mixed integer
problems. In this case, a MergedVariables view is used. AllMergedVariables is included for completeness.

The VarConstraints hierarchy contains the same specializations for managing linear and bound con-
straints on the variables (see FundamentalVarConstraints, AllVarConstraints, MergedVarConstraints, and
AllMergedVarConstraints).

1.2.5 Interfaces

Class hierarchy: Interface.

Interfaces provide access to simulation codes or, conversely, approximations based on simulation code
data. In the simulation case, an ApplicationInterface is used. ApplicationInterface is specialized according
to the simulation invocation mechanism, for which the following nonintrusive approaches

� SysCallApplicInterface: the simulation is invoked using a system call (the C function system()).
Asynchronous invocation utilizes a background system call. Utilizes the SysCallAnalysisCode class
to define syntax for input filter, analysis code, output filter, or combined spawning, which in turn
utilize the CommandShell utility.

� ForkApplicInterface: the simulation is invoked using a fork (the fork/exec/wait family of
functions). Asynchronous invocation utilizes a nonblocking fork. Utilizes the ForkAnalysisCode
class for lower level fork operations.

� GridApplicInterface: the simulation is invoked using distributed resource facilities. This capability
is experimental and still under development. The design is evolving into the use of Condor and/or
Globus tools.

and the following semi-intrusive approach

� DirectFnApplicInterface: the simulation is linked into the DAKOTA executable and is invoked using
a procedure call. Asynchronous invocation utilizes a nonblocking thread (capability not yet avail-
able).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

1.3 Services 15

are supported. Scheduling of jobs for asynchronous local, message passing, and hybrid parallelism ap-
proaches is performed in the ApplicationInterface class, with job initiation and job capture specifics imple-
mented in the derived classes.

In the data fit approximation case, global, multipoint, or local approximations to simulation code response
data can be built and used as surrogates for the actual, expensive simulation. The interface class providing
this capability is

� ApproximationInterface: builds an approximation using data from a truth model and then em-
ploys the approximation for mapping variables to responses. This class contains an array of
Approximation objects, one per response function, which allows mixing of approximation types (us-
ing the Approximation derived classes: ANNSurf, KrigingSurf, MARSSurf, RespSurf, HermiteSurf,
and TaylorSurf).

Note: in the data fit approximation case, SurrLayeredModel provides the bulk of the surrogate management
logic. It contains an ApproximationInterface object which provides the approximate parameter to response
mappings. In the hierarchical approximation case, an ApproximationInterface object is not used since
HierLayeredModel contains low and high fidelity application interfaces.

1.2.6 Responses

Class: Response.

The Response class provides an abstract data representation of response functions and their first and second
derivatives (gradient vectors and Hessian matrices). These response functions can be interpreted as an
objective function and constraints (optimization data set), residual functions and constraints (least squares
data set), or generic response functions (uncertainty quantification data set). This class is not currently part
of a class hierarchy, since the abstraction has been sufficiently general and has not required specialization.

1.3 Services

A variety of services are provided in DAKOTA for parallel computing, failure capturing, restart, graphics,
etc. An overview of the classes and member functions involved in performing these services is included
below.

� Multilevel parallel computing: DAKOTA supports multiple levels of nested parallelism. A strategy
can manage concurrent iterators, each of which manages concurrent function evaluations, each of
which manages concurrent analyses executing on multiple processors. Partitioning of these levels
with MPI communicators is managed in ParallelLibrary and scheduling routines for the levels are
part of ConcurrentStrategy, ApplicationInterface, and ForkApplicInterface.

� Parsing: DAKOTA employs the Input Deck Reader (IDR) parser to retrieve informa-
tion from user input files. Parsing options are processed in CommandLineHandler and
parsing occurs in ProblemDescDB::manage_inputs() called from main.C. IDR popu-
lates data within the ProblemDescDB support class, which maintains a DataStrategy
specification and lists of DataMethod, DataVariables, DataInterface, and DataResponses
specifications. Procedures for modifying the parsing subsystem are described in
Instructions for Modifying DAKOTA’s Input Specification.

� Failure capturing: Simulation failures can be trapped and managed using exception handling in
ApplicationInterface and its derived classes.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

16 DAKOTA Developers Manual

� Restart: DAKOTA maintains a record of all function evaluations both in memory (for captur-
ing any duplication) and on the file system (for restarting runs). Restart options are processed
in CommandLineHandler and retrieved in ParallelLibrary::specify_outputs_restart(), restart file
management occurs in ParallelLibrary::manage_outputs_restart(), and restart file insertions occur
in ApplicationInterface. The dakota_restart_util executable, built from restart_util.C,
provides a variety of services for interrogating, converting, repairing, concatenating, and post-
processing restart files.

� Memory management: DAKOTA employs the techniques of reference counting and representation
sharing through the use of letter-envelope and handle-body idioms (Coplien, "Advanced C++"). The
former idiom provides for memory efficiency and enhanced polymorphism in the following class
hierarchies: Strategy, Iterator, Model, Variables, VarConstraints, Interface, and Approximation. The
latter idiom provides for memory efficiency in data-intensive classes which do not involve a class
hierarchy. Currently, only the Response class uses this idiom.

� Graphics: DAKOTA provides 2D iteration history graphics using Motif widgets and 3D surface
plotting graphics from the PLPLOT package. Graphics data can also be catalogued in a tabular data
file for post-processing with 3rd party tools such as Matlab, Tecplot, etc. All of these capabilities are
encapsulated within the Graphics class.

1.4 Additional Resources

Additional development resources include:

� Recommended Practices for DAKOTA Development

� Instructions for Modifying DAKOTA’s Input Specification

� In addition to its normal usage as a stand-alone application, DAKOTA may be interfaced as an
algorithm library as described in Interfacing with DAKOTA as a Library.

� The execution of function evaluations is a core component of DAKOTA involving several class hier-
archies. An overview of the classes and member functions involved in performing these evaluations
is provided in Performing Function Evaluations.

� Project web pages are maintained at http://endo.sandia.gov/DAKOTA
with software specifics and documentation pointers provided at
http://endo.sandia.gov/DAKOTA/software.html, and a list of publications provided
at http://endo.sandia.gov/DAKOTA/references.html

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

http://endo.sandia.gov/DAKOTA
http://endo.sandia.gov/DAKOTA/software.html
http://endo.sandia.gov/DAKOTA/references.html

Chapter 2

DAKOTA Namespace Index

2.1 DAKOTA Namespace List

Here is a list of all documented namespaces with brief descriptions:

Dakota (The primary namespace for DAKOTA) . 27

18 DAKOTA Namespace Index

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 3

DAKOTA Hierarchical Index

3.1 DAKOTA Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AnalysisCode . 63

ForkAnalysisCode . 171
SysCallAnalysisCode . 424

Approximation . 83
ANNSurf . 70
HermiteSurf . 198
KrigingSurf . 235
MARSSurf . 249
RespSurf . 372
TaylorSurf . 428

Array . 91
BaseConstructor . 95
BaseVector . 96

Vector . 445

BaseVector � BaseVector � T � � . 96

Matrix . 251

BiStream . 100
BoStream . 103
COLINApplication . 108
COLINOptimizer . 111
ColinPoint . 114
CommandShell . 117
CtelRegexp . 129
DataInterface . 131
DataMethod . 136
DataResponses . 146
DataStrategy . 149
DataVariables . 153
ErrorTable . 170
FunctionCompare . 179
GetLongOpt . 189

CommandLineHandler . 115

20 DAKOTA Hierarchical Index

Graphics . 193
Interface . 205

ApplicationInterface . 72
DirectFnApplicInterface . 162
ForkApplicInterface . 173
GridApplicInterface . 196
SysCallApplicInterface . 426

ApproximationInterface . 88
Iterator . 211

Analyzer . 66
NonD . 305

NonDReliability . 314
NonDSampling . 323

NonDLHSSampling . 308
NonDPCESampling . 312

PStudyDACE . 360
DDACEDesignCompExp . 159
FSUDesignCompExp . 176
ParamStudy . 351

Minimizer . 260
LeastSq . 243

NL2SOLLeastSq . 299
NLSSOLLeastSq . 302
SNLLLeastSq . 390

Optimizer . 330
CONMINOptimizer . 122
DOTOptimizer . 166
JEGAOptimizer . 223
NPSOLOptimizer . 327
rSQPOptimizer . 374
SGOPTOptimizer . 378
SNLLOptimizer . 394

JEGAEvaluator . 218
KrigApprox . 227
List . 245
Model . 264

LayeredModel . 237
HierLayeredModel . 200
SurrLayeredModel . 417

NestedModel . 291
SingleModel . 384

MPIPackBuffer . 282
MPIUnpackBuffer . 285
Nl2Misc . 298
NoDBBaseConstructor . 304
ParallelConfiguration . 333
ParallelLevel . 335
ParallelLibrary . 338
ParamResponsePair . 348
ProblemDescDB . 354
Response . 363
ResponseRep . 367

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

3.1 DAKOTA Class Hierarchy 21

SGOPTApplication . 376
SNLLBase . 387

SNLLLeastSq . 390
SNLLOptimizer . 394

SOLBase . 400

NLSSOLLeastSq . 302
NPSOLOptimizer . 327

SortCompare . 403
Strategy . 404

BranchBndStrategy . 106
ConcurrentStrategy . 119
MultilevelOptStrategy . 288
NonDOptStrategy . 310
SingleMethodStrategy . 382
SurrBasedOptStrategy . 411

String . 409
SurrogateDataPoint . 422
VarConstraints . 430

AllMergedVarConstraints . 49
AllVarConstraints . 56
FundamentalVarConstraints . 180
MergedVarConstraints . 253

Variables . 436

AllMergedVariables . 52
AllVariables . 59
FundamentalVariables . 184
MergedVariables . 256

VariablesUtil . 443

AllMergedVarConstraints . 49
AllMergedVariables . 52
AllVarConstraints . 56
AllVariables . 59
FundamentalVarConstraints . 180
FundamentalVariables . 184
MergedVarConstraints . 253
MergedVariables . 256

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

22 DAKOTA Hierarchical Index

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 4

DAKOTA Class Index

4.1 DAKOTA Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AllMergedVarConstraints (Derived class within the VarConstraints hierarchy which combines
the all and merged data views) . 49

AllMergedVariables (Derived class within the Variables hierarchy which combines the all and
merged data views) . 52

AllVarConstraints (Derived class within the VarConstraints hierarchy which employs the all data
view) . 56

AllVariables (Derived class within the Variables hierarchy which employs the all data view) . . 59
AnalysisCode (Base class providing common functionality for derived classes

(SysCallAnalysisCode and ForkAnalysisCode) which spawn separate processes
for managing simulations) . 63

Analyzer (Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy) . . 66
ANNSurf (Derived approximation class for artificial neural networks) 70
ApplicationInterface (Derived class within the interface class hierarchy for supporting interfaces

to simulation codes) . 72
Approximation (Base class for the approximation class hierarchy) 83
ApproximationInterface (Derived class within the interface class hierarchy for supporting ap-

proximations to simulation-based results) . 88
Array (Template class for the Dakota bookkeeping array) . 91
BaseConstructor (Dummy struct for overloading letter-envelope constructors) 95
BaseVector (Base class for the Dakota::Matrix and Dakota::Vector classes) 96
BiStream (The binary input stream class. Overloads the � � operator for all data types) 100
BoStream (The binary output stream class. Overloads the � � operator for all data types) 103
BranchBndStrategy (Strategy for mixed integer nonlinear programming using the PICO parallel

branch and bound engine) . 106
COLINApplication . 108
COLINOptimizer (Wrapper class for optimizers defined using COLIN) 111
ColinPoint . 114
CommandLineHandler (Utility class for managing command line inputs to DAKOTA) 115
CommandShell (Utility class which defines convenience operators for spawning processes with

system calls) . 117
ConcurrentStrategy (Strategy for multi-start iteration or pareto set optimization) 119
CONMINOptimizer (Wrapper class for the CONMIN optimization library) 122
CtelRegexp . 129

24 DAKOTA Class Index

DataInterface (Container class for interface specification data) 131
DataMethod (Container class for method specification data) 136
DataResponses (Container class for responses specification data) 146
DataStrategy (Container class for strategy specification data) 149
DataVariables (Container class for variables specification data) 153
DDACEDesignCompExp (Wrapper class for the DDACE design of experiments library) 159
DirectFnApplicInterface (Derived application interface class which spawns simulation codes and

testers using direct procedure calls) . 162
DOTOptimizer (Wrapper class for the DOT optimization library) 166
ErrorTable (Data structure to hold errors) . 170
ForkAnalysisCode (Derived class in the AnalysisCode class hierarchy which spawns simulations

using forks) . 171
ForkApplicInterface (Derived application interface class which spawns simulation codes using

forks) . 173
FSUDesignCompExp (Wrapper class for the FSUDace QMC/CVT library) 176
FunctionCompare . 179
FundamentalVarConstraints (Derived class within the VarConstraints hierarchy which employs

the default data view (no variable or domain type array merging)) 180
FundamentalVariables (Derived class within the Variables hierarchy which employs the default

data view (no variable or domain type array merging)) 184
GetLongOpt (GetLongOpt is a general command line utility from S. Manoharan (Advanced

Computer Research Institute, Lyon, France)) . 189
Graphics (Single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular catalogu-

ing of data for post-processing with Matlab, Tecplot, etc) 193
GridApplicInterface (Derived application interface class which spawns simulation codes using

grid services such as Condor or Globus) . 196
HermiteSurf (Derived approximation class for Hermite polynomials (global approximation)) . . 198
HierLayeredModel (Derived model class within the layered model branch for managing hierar-

chical surrogates (models of varying fidelity)) . 200
Interface (Base class for the interface class hierarchy) . 205
Iterator (Base class for the iterator class hierarchy) . 211
JEGAEvaluator (This evaluator uses Sandia National Laboratories Dakota software) 218
JEGAOptimizer (Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms) . . 223
KrigApprox (Utility class for kriging interpolation) . 227
KrigingSurf (Derived approximation class for kriging interpolation) 235
LayeredModel (Base class for the layered models (SurrLayeredModel and HierLayeredModel)) 237
LeastSq (Base class for the nonlinear least squares branch of the iterator hierarchy) 243
List (Template class for the Dakota bookkeeping list) . 245
MARSSurf (Derived approximation class for multivariate adaptive regression splines) 249
Matrix (Template class for the Dakota numerical matrix) . 251
MergedVarConstraints (Derived class within the VarConstraints hierarchy which employs the

merged data view) . 253
MergedVariables (Derived class within the Variables hierarchy which employs the merged data

view) . 256
Minimizer (Base class for the optimizer and least squares branches of the iterator hierarchy) . . 260
Model (Base class for the model class hierarchy) . 264
MPIPackBuffer (Class for packing MPI message buffers) . 282
MPIUnpackBuffer (Class for unpacking MPI message buffers) 285
MultilevelOptStrategy (Strategy for hybrid optimization using multiple optimizers on multiple

models of varying fidelity) . 288
NestedModel (Derived model class which performs a complete sub-iterator execution within

every evaluation of the model) . 291
Nl2Misc (Auxiliary information passed to calcr and calcj via ur) 298
NL2SOLLeastSq (Wrapper class for the NL2SOL nonlinear least squares library) 299

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

4.1 DAKOTA Class List 25

NLSSOLLeastSq (Wrapper class for the NLSSOL nonlinear least squares library) 302
NoDBBaseConstructor (Dummy struct for overloading constructors used in on-the-fly instantia-

tions) . 304
NonD (Base class for all nondetermistic iterators (the DAKOTA/UQ branch)) 305
NonDLHSSampling (Performs LHS and Monte Carlo sampling for uncertainty quantification) . 308
NonDOptStrategy (Strategy for optimization under uncertainty (robust and reliability-based de-

sign)) . 310
NonDPCESampling (Stochastic finite element approach to uncertainty quantification using poly-

nomial chaos expansions) . 312
NonDReliability (Class for the analytical reliability methods within DAKOTA/UQ) 314
NonDSampling (Base class for common code between NonDLHSSampling and

NonDPCESampling) . 323
NPSOLOptimizer (Wrapper class for the NPSOL optimization library) 327
Optimizer (Base class for the optimizer branch of the iterator hierarchy) 330
ParallelConfiguration (Container class for a set of ParallelLevel list iterators that collectively

identify a particular multilevel parallel configuration) 333
ParallelLevel (Container class for the data associated with a single level of communicator parti-

tioning) . 335
ParallelLibrary (Class for partitioning multiple levels of parallelism and managing message pass-

ing within these levels) . 338
ParamResponsePair (Container class for a variables object, a response object, and an evaluation

id) . 348
ParamStudy (Class for vector, list, centered, and multidimensional parameter studies) 351
ProblemDescDB (The database containing information parsed from the DAKOTA input file) . . 354
PStudyDACE (Base class for managing common aspects of parameter studies and design of

experiments methods) . 360
Response (Container class for response functions and their derivatives. Response provides the

handle class) . 363
ResponseRep (Container class for response functions and their derivatives. ResponseRep pro-

vides the body class) . 367
RespSurf (Derived approximation class for polynomial regression) 372
rSQPOptimizer . 374
SGOPTApplication (Maps the evaluation functions used by SGOPT algorithms to the DAKOTA

evaluation functions) . 376
SGOPTOptimizer (Wrapper class for the SGOPT optimization library) 378
SingleMethodStrategy (Simple fall-through strategy for running a single iterator on a single

model) . 382
SingleModel (Derived model class which utilizes a single interface to map variables into re-

sponses) . 384
SNLLBase (Base class for OPT++ optimization and least squares methods) 387
SNLLLeastSq (Wrapper class for the OPT++ optimization library) 390
SNLLOptimizer (Wrapper class for the OPT++ optimization library) 394
SOLBase (Base class for Stanford SOL software) . 400
SortCompare . 403
Strategy (Base class for the strategy class hierarchy) . 404
String (Dakota::String class, used as main string class for Dakota) 409
SurrBasedOptStrategy (Strategy for provably-convergent surrogate-based optimization) 411
SurrLayeredModel (Derived model class within the layered model branch for managing data fit

surrogates (global and local)) . 417
SurrogateDataPoint (Simple container class encapsulating basic parameter and response data for

defining a "truth" data point) . 422
SysCallAnalysisCode (Derived class in the AnalysisCode class hierarchy which spawns simula-

tions using system calls) . 424

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

26 DAKOTA Class Index

SysCallApplicInterface (Derived application interface class which spawns simulation codes us-
ing system calls) . 426

TaylorSurf (Derived approximation class for first- or second-order Taylor series (local approxi-
mation)) . 428

VarConstraints (Base class for the variable constraints class hierarchy) 430
Variables (Base class for the variables class hierarchy) . 436
VariablesUtil (Utility class for the Variables and VarConstraints hierarchies which provides con-

venience functions for variable vectors and label arrays for combining design, uncer-
tain, and state variable types and merging continuous and discrete variable domains
) . 443

Vector (Template class for the Dakota numerical vector) . 445

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 5

DAKOTA File Index

5.1 DAKOTA File List

Here is a list of all documented files with brief descriptions:

keywordtable.C (File containing keywords for the strategy, method, variables, interface, and re-
sponses input specifications from dakota.input.spec) 449

main.C (File containing the main program for DAKOTA) . 450
restart_util.C (File containing the DAKOTA restart utility main program) 451

28 DAKOTA File Index

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 6

DAKOTA Page Index

6.1 DAKOTA Related Pages

Here is a list of all related documentation pages:

Interfacing with DAKOTA as a Library . 455
Performing Function Evaluations . 461
Recommended Practices for DAKOTA Development . 463
Instructions for Modifying DAKOTA’s Input Specification . 467

30 DAKOTA Page Index

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 7

DAKOTA Namespace Documentation

7.1

The primary namespace for DAKOTA.

Classes

� class AllMergedVarConstraints

Derived class within the VarConstraints hierarchy which combines the all and merged data views.

� class AllMergedVariables

Derived class within the Variables hierarchy which combines the all and merged data views.

� class AllVarConstraints

Derived class within the VarConstraints hierarchy which employs the all data view.

� class AllVariables

Derived class within the Variables hierarchy which employs the all data view.

� class AnalysisCode

Base class providing common functionality for derived classes (SysCallAnalysisCode and
ForkAnalysisCode) which spawn separate processes for managing simulations.

� class ANNSurf

Derived approximation class for artificial neural networks.

� class ApplicationInterface

Derived class within the interface class hierarchy for supporting interfaces to simulation codes.

� class ApproximationInterface

Derived class within the interface class hierarchy for supporting approximations to simulation-based re-
sults.

32 DAKOTA Namespace Documentation

� class BranchBndStrategy

Strategy for mixed integer nonlinear programming using the PICO parallel branch and bound engine.

� class COLINApplication
� class COLINOptimizer

Wrapper class for optimizers defined using COLIN.

� class GetLongOpt

GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute,
Lyon, France).

� class CommandLineHandler

Utility class for managing command line inputs to DAKOTA.

� class CommandShell

Utility class which defines convenience operators for spawning processes with system calls.

� class ConcurrentStrategy

Strategy for multi-start iteration or pareto set optimization.

� class CONMINOptimizer

Wrapper class for the CONMIN optimization library.

� class Analyzer

Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy.

� class SurrogateDataPoint

Simple container class encapsulating basic parameter and response data for defining a "truth" data point.

� class Approximation

Base class for the approximation class hierarchy.

� class Array

Template class for the Dakota bookkeeping array.

� class BaseVector

Base class for the Dakota::Matrix and Dakota::Vector classes.

� class BiStream

The binary input stream class. Overloads the
���

operator for all data types.

� class BoStream

The binary output stream class. Overloads the ��� operator for all data types.

� class Graphics

The Graphics class provides a single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular
cataloguing of data for post-processing with Matlab, Tecplot, etc.

� class Interface

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 33

Base class for the interface class hierarchy.

� class Iterator

Base class for the iterator class hierarchy.

� class LeastSq

Base class for the nonlinear least squares branch of the iterator hierarchy.

� class List

Template class for the Dakota bookkeeping list.

� class FunctionCompare
� class SortCompare
� class Matrix

Template class for the Dakota numerical matrix.

� class Minimizer

Base class for the optimizer and least squares branches of the iterator hierarchy.

� class Model

Base class for the model class hierarchy.

� class NonD

Base class for all nondetermistic iterators (the DAKOTA/UQ branch).

� class Optimizer

Base class for the optimizer branch of the iterator hierarchy.

� class PStudyDACE

Base class for managing common aspects of parameter studies and design of experiments methods.

� class Response

Container class for response functions and their derivatives. Response provides the handle class.

� class ResponseRep

Container class for response functions and their derivatives. ResponseRep provides the body class.

� class Strategy

Base class for the strategy class hierarchy.

� class String

Dakota::String class, used as main string class for Dakota.

� class VarConstraints

Base class for the variable constraints class hierarchy.

� class Variables

Base class for the variables class hierarchy.

� class Vector

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

34 DAKOTA Namespace Documentation

Template class for the Dakota numerical vector.

� class DataInterface

Container class for interface specification data.

� class DataMethod

Container class for method specification data.

� class DataResponses

Container class for responses specification data.

� class DataStrategy

Container class for strategy specification data.

� class DataVariables

Container class for variables specification data.

� class DDACEDesignCompExp

Wrapper class for the DDACE design of experiments library.

� class DirectFnApplicInterface

Derived application interface class which spawns simulation codes and testers using direct procedure calls.

� class DOTOptimizer

Wrapper class for the DOT optimization library.

� class ForkAnalysisCode

Derived class in the AnalysisCode class hierarchy which spawns simulations using forks.

� class ForkApplicInterface

Derived application interface class which spawns simulation codes using forks.

� class FSUDesignCompExp

Wrapper class for the FSUDace QMC/CVT library.

� class FundamentalVarConstraints

Derived class within the VarConstraints hierarchy which employs the default data view (no variable or
domain type array merging).

� class FundamentalVariables

Derived class within the Variables hierarchy which employs the default data view (no variable or domain
type array merging).

� class GridApplicInterface

Derived application interface class which spawns simulation codes using grid services such as Condor or
Globus.

� class HermiteSurf

Derived approximation class for Hermite polynomials (global approximation).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 35

� class HierLayeredModel

Derived model class within the layered model branch for managing hierarchical surrogates (models of
varying fidelity).

� class JEGAEvaluator

This evaluator uses Sandia National Laboratories Dakota software.

� class JEGAOptimizer

Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms.

� class KrigingSurf

Derived approximation class for kriging interpolation.

� class KrigApprox

Utility class for kriging interpolation.

� class LayeredModel

Base class for the layered models (SurrLayeredModel and HierLayeredModel).

� class MARSSurf

Derived approximation class for multivariate adaptive regression splines.

� class MergedVarConstraints

Derived class within the VarConstraints hierarchy which employs the merged data view.

� class MergedVariables

Derived class within the Variables hierarchy which employs the merged data view.

� class MPIPackBuffer

Class for packing MPI message buffers.

� class MPIUnpackBuffer

Class for unpacking MPI message buffers.

� class MultilevelOptStrategy

Strategy for hybrid optimization using multiple optimizers on multiple models of varying fidelity.

� class NestedModel

Derived model class which performs a complete sub-iterator execution within every evaluation of the model.

� struct Nl2Misc

Auxiliary information passed to calcr and calcj via ur.

� class NL2SOLLeastSq

Wrapper class for the NL2SOL nonlinear least squares library.

� class NLSSOLLeastSq

Wrapper class for the NLSSOL nonlinear least squares library.

� class NonDLHSSampling

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

36 DAKOTA Namespace Documentation

Performs LHS and Monte Carlo sampling for uncertainty quantification.

� class NonDOptStrategy

Strategy for optimization under uncertainty (robust and reliability-based design).

� class NonDPCESampling

Stochastic finite element approach to uncertainty quantification using polynomial chaos expansions.

� class NonDReliability

Class for the analytical reliability methods within DAKOTA/UQ.

� class NonDSampling

Base class for common code between NonDLHSSampling and NonDPCESampling.

� class NPSOLOptimizer

Wrapper class for the NPSOL optimization library.

� class ParallelLevel

Container class for the data associated with a single level of communicator partitioning.

� class ParallelConfiguration

Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel
parallel configuration.

� class ParallelLibrary

Class for partitioning multiple levels of parallelism and managing message passing within these levels.

� class ParamResponsePair

Container class for a variables object, a response object, and an evaluation id.

� class ParamStudy

Class for vector, list, centered, and multidimensional parameter studies.

� struct BaseConstructor

Dummy struct for overloading letter-envelope constructors.

� struct NoDBBaseConstructor

Dummy struct for overloading constructors used in on-the-fly instantiations.

� class ProblemDescDB

The database containing information parsed from the DAKOTA input file.

� class RespSurf

Derived approximation class for polynomial regression.

� class rSQPOptimizer
� class SGOPTApplication

Maps the evaluation functions used by SGOPT algorithms to the DAKOTA evaluation functions.

� class SGOPTOptimizer

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 37

Wrapper class for the SGOPT optimization library.

� class SingleMethodStrategy

Simple fall-through strategy for running a single iterator on a single model.

� class SingleModel

Derived model class which utilizes a single interface to map variables into responses.

� class SNLLBase

Base class for OPT++ optimization and least squares methods.

� class SNLLLeastSq

Wrapper class for the OPT++ optimization library.

� class SNLLOptimizer

Wrapper class for the OPT++ optimization library.

� class SOLBase

Base class for Stanford SOL software.

� class SurrBasedOptStrategy

Strategy for provably-convergent surrogate-based optimization.

� class SurrLayeredModel

Derived model class within the layered model branch for managing data fit surrogates (global and local).

� class SysCallAnalysisCode

Derived class in the AnalysisCode class hierarchy which spawns simulations using system calls.

� class SysCallApplicInterface

Derived application interface class which spawns simulation codes using system calls.

� class TaylorSurf

Derived approximation class for first- or second-order Taylor series (local approximation).

� class VariablesUtil

Utility class for the Variables and VarConstraints hierarchies which provides convenience functions for
variable vectors and label arrays for combining design, uncertain, and state variable types and merging
continuous and discrete variable domains.

Typedefs

� typedef double Real
� typedef Array � Real � RealArray
� typedef Array � int � IntArray
� typedef Array � size_t � SizetArray
� typedef Array � String � StringArray
� typedef Array � StringArray � String2DArray
� typedef Array � Variables � VariablesArray

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

38 DAKOTA Namespace Documentation

� typedef Array � Response � ResponseArray
� typedef Array � Model � ModelArray
� typedef Array � Iterator � IteratorArray
� typedef Array � ParamResponsePair � PRPArray
� typedef List � bool � BoolList
� typedef List � int � IntList
� typedef List � size_t � SizetList
� typedef List � Real � RealList
� typedef List � String � StringList
� typedef List � Variables � VariablesList
� typedef List � Response � ResponseList
� typedef List � Model � ModelList
� typedef List � Iterator � IteratorList
� typedef List � ParamResponsePair � PRPList
� typedef IntList::iterator ILIter
� typedef IntList::const_iterator ILCIter
� typedef SizetList::iterator StLIter
� typedef SizetList::const_iterator StLCIter
� typedef StringList::iterator StringLIter
� typedef StringList::const_iterator StringLCIter
� typedef VariablesList::iterator VarsLIter
� typedef ResponseList::iterator RespLIter
� typedef ModelList::iterator ModelLIter
� typedef IteratorList::iterator IterLIter
� typedef PRPList::iterator PRPLIter
� typedef List � ParallelLevel � ::iterator ParLevLIter
� typedef List � ParallelConfiguration � ::iterator ParConfigLIter
� typedef Vector � Real � RealVector
� typedef Vector � int � IntVector
� typedef BaseVector � Real � RealBaseVector
� typedef Matrix � Real � RealMatrix
� typedef Matrix � int � IntMatrix
� typedef Array � RealVector � RealVectorArray
� typedef Array � RealVectorArray � RealVector2DArray
� typedef Array � RealBaseVector � RealBaseVectorArray
� typedef Array � RealMatrix � RealMatrixArray
� typedef List � RealVector � RealVectorList
� typedef unsigned char u_char
� typedef unsigned short u_short
� typedef unsigned int u_int
� typedef unsigned long u_long
� typedef long long long_long
� typedef void(� Vf)()
� typedef void(� Calcrj)(int � n, int � p, Real � x, int � nf, Real � r, int � ui, void � ur, Vf vf)

Enumerations

� enum LHSNames {

NORMAL, LOGNORMAL, UNIFORM, LOGUNIFORM,

WEIBULL, CONSTANT, USERDEFINED }

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 39

Functions

� bool operator== (const AllMergedVariables &vars1, const AllMergedVariables &vars2)

equality operator

� bool operator== (const AllVariables &vars1, const AllVariables &vars2)

equality operator

� template � � void COLINOptimizer � coliny::DIRECT � ::set_rng (void)

————————————————————————– Section 3———————————————————
—————–

� template � � void COLINOptimizer � coliny::DIRECT � ::set_method_parameters (void)
� template � � void COLINOptimizer � coliny::Cobyla � ::set_method_parameters (void)
� template � � void COLINOptimizer � coliny::APPS � ::set_method_parameters (void)
� template � � void COLINOptimizer � coliny::PatternSearch � ::set_runtime_parameters ()
� template � � void COLINOptimizer � coliny::PatternSearch � ::set_method_parameters (void)
� template � � void COLINOptimizer � coliny::PEAreal � ::set_method_parameters (void)
� template � � void COLINOptimizer � coliny::SolisWets � ::set_method_parameters (void)
� CommandShell & flush (CommandShell &shell)

convenient shell manipulator function to "flush" the shell

� template � class T � ostream & operator � � (ostream &s, const Array � T � &data)

global ostream insertion operator for Array

� template � class T � MPIPackBuffer & operator � � (MPIPackBuffer &s, const Array � T � &data)

global MPIPackBuffer insertion operator for Array

� template � class T � MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, Array � T � &data)

global MPIUnpackBuffer extraction operator for Array

� template � class T � ostream & operator � � (ostream &s, const List � T � &data)

global ostream insertion operator for List

� template � class T � MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, List � T � &data)

global MPIUnpackBuffer extraction operator for List

� template � class T � MPIPackBuffer & operator � � (MPIPackBuffer &s, const List � T � &data)

global MPIPackBuffer insertion operator for List

� template � class T � ostream & operator � � (ostream &s, const Matrix � T � &data)

global ostream insertion operator for Matrix

� template � class T � MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, Matrix � T � &data)

global MPIUnpackBuffer extraction operator for Matrix

� template � class T � MPIPackBuffer & operator � � (MPIPackBuffer &s, const Matrix � T � &data)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

40 DAKOTA Namespace Documentation

global MPIPackBuffer insertion operator for Matrix

� istream & operator � � (istream &s, Response &response)

istream extraction operator for Response. Calls read(istream&).

� ostream & operator � � (ostream &s, const Response &response)

ostream insertion operator for Response. Calls write(istream&).

� BiStream & operator � � (BiStream &s, Response &response)

BiStream extraction operator for Response. Calls read(BiStream&).

� BoStream & operator � � (BoStream &s, const Response &response)

BoStream insertion operator for Response. Calls write(BoStream&).

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, Response &response)

MPIUnpackBuffer extraction operator for Response. Calls read(MPIUnpackBuffer&).

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const Response &response)

MPIPackBuffer insertion operator for Response. Calls write(MPIPackBuffer&).

� bool operator== (const Response &resp1, const Response &resp2)

equality operator

� bool operator!= (const Response &resp1, const Response &resp2)

inequality operator

� bool operator== (const ResponseRep &rep1, const ResponseRep &rep2)

equality operator

� String toUpper (const String &str)

Return upper-case version of argument.

� String toLower (const String &str)

Return lower-case version of argument.

� String operator+ (const String &s1, const String &s2)

Concatenate two Strings and return the resulting String.

� String operator+ (const char � s1, const String &s2)

Append a String to a char � and return the resulting String.

� String operator+ (const String &s1, const char � s2)

Append a char � to a String and return the resulting String.

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const String &data)

Reads String from buffer.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, String &data)

Writes String to buffer.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 41

� istream & operator � � (istream &s, VarConstraints &vc)

istream extraction operator for VarConstraints

� ostream & operator � � (ostream &s, const VarConstraints &vc)

ostream insertion operator for VarConstraints

� istream & operator � � (istream &s, Variables &vars)

istream extraction operator for Variables.

� ostream & operator � � (ostream &s, const Variables &vars)

ostream insertion operator for Variables.

� BiStream & operator � � (BiStream &s, Variables &vars)

BiStream extraction operator for Variables.

� BoStream & operator � � (BoStream &s, const Variables &vars)

BoStream insertion operator for Variables.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, Variables &vars)

MPIUnpackBuffer extraction operator for Variables.

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const Variables &vars)

MPIPackBuffer insertion operator for Variables.

� bool operator== (const Variables &vars1, const Variables &vars2)

equality operator

� bool operator!= (const Variables &vars1, const Variables &vars2)

inequality operator

� template � class T � istream & operator � � (istream &s, Vector � T � &data)

global istream extraction operator for Vector

� template � class T � ostream & operator � � (ostream &s, const Vector � T � &data)

global ostream insertion operator for Vector

� template � class T � MPIPackBuffer & operator � � (MPIPackBuffer &s, const Vector � T � &data)

global MPIPackBuffer insertion operator for Vector

� template � class T � MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, Vector � T � &data)

global MPIUnpackBuffer extraction operator for Vector

� bool operator== (const RealVector &drv1, const RealVector &drv2)

equality operator for RealVector

� bool operator== (const IntVector &div1, const IntVector &div2)

equality operator for IntVector

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

42 DAKOTA Namespace Documentation

� bool operator== (const IntArray &dia1, const IntArray &dia2)

equality operator for IntArray

� bool operator== (const RealMatrix &drm1, const RealMatrix &drm2)

equality operator for RealMatrix

� bool operator== (const RealMatrixArray &drma1, const RealMatrixArray &drma2)

equality operator for RealMatrixArray

� bool operator== (const StringArray &dsa1, const StringArray &dsa2)

equality operator for StringArray

� bool operator!= (const RealVector &drv1, const RealVector &drv2)

inequality operator for RealVector

� bool operator!= (const IntVector &div1, const IntVector &div2)

inequality operator for IntVector

� bool operator!= (const IntArray &dia1, const IntArray &dia2)

inequality operator for IntArray

� bool operator!= (const RealMatrix &drm1, const RealMatrix &drm2)

inequality operator for RealMatrix

� bool operator!= (const RealMatrixArray &drma1, const RealMatrixArray &drma2)

inequality operator for RealMatrixArray

� bool operator!= (const StringArray &dsa1, const StringArray &dsa2)

inequality operator for StringArray

� void copy_data (const Real � ptr, const int ptr_len, RealVector &drv)

copy Real � to RealVector

� void copy_data (const Real � ptr, const int ptr_len, RealBaseVector &drbv)

copy Real � to RealBaseVector

� void copy_data (const Real � ptr, const int nr, const int nc, RealMatrix &drm, const String &ptr_type)

copy Real � to RealMatrix

� void copy_data (const RealMatrix &drm, Real � ptr, const int ptr_len, const String &ptr_type)

copy RealMatrix to Real �

� void copy_data (const Real � ptr, const int num_vec, const int vec_len, RealVectorArray &drva,
const String &ptr_type)

copy Real � to RealVectorArray

� void copy_data (const RealVector &drv, RealMatrix &drm, size_t nr, size_t nc)

copy RealVector to RealMatrix

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 43

� void copy_data (const RealVector &drv, RealVectorArray &drva, size_t num_vec, size_t vec_len)

copy RealVector to RealVectorArray

� void copy_data (const RealArray &dra, RealVector &drv)

copy RealArray to RealVector

� void copy_data (const RealBaseVector &drbv, RealVector &drv)

copy RealBaseVector to RealVector

� void copy_data (const utilib::RealVector &rv, RealVector &drv)

copy utilib::RealVector to RealVector

� void copy_data (const RealVector &drv, utilib::RealVector &rv)

copy RealVector to utilib::RealVector

� void copy_data (const utilib::IntVector &iv, IntVector &div)

copy utilib::IntVector to IntVector

� void copy_data (const IntVector &div, utilib::IntVector &iv)

copy IntVector to utilib::IntVector

� void copy_data (const utilib::IntVector &iv, IntArray &dia)

copy utilib::IntVector to IntArray

� void copy_data (const IntList &dil, utilib::IntVector &iv)

copy IntList to utilib::IntVector

� void copy_data (const ::ColumnVector &cv, RealBaseVector &drbv)

copy NEWMAT::ColumnVector to RealBaseVector

� void copy_data (const RealBaseVector &drbv,::ColumnVector &cv)

copy RealBaseVector to NEWMAT::ColumnVector

� void copy_data (const RealArray &dra,::ColumnVector &cv)

copy RealArray to NEWMAT::ColumnVector

� void copy_data (const RealMatrix &drm,::SymmetricMatrix &sm)

copy RealMatrix to NEWMAT::SymmetricMatrix

� void copy_data (const RealMatrix &drm,::Matrix &m)

copy RealMatrix to NEWMAT::Matrix

� void copy_data (const TNT::Vector � Real � &tntv, RealVector &drv)

copy TNT::Vector to RealVector

� void copy_data (const RealVector &drv, TNT::Vector � Real � &tntv)

copy RealVector to TNT::Vector

� void copy_data (const Real � ptr, const int ptr_len, TNT::Vector � Real � &tntv)

copy Real � to TNT::Vector

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

44 DAKOTA Namespace Documentation

� void copy_data (const RealMatrix &drm, TNT::Matrix � Real � &tntm)

copy RealMatrix to TNT::Matrix

� void copy_data (const Epetra_SerialDenseVector &psdv, RealVector &drv)

copy Epetra_SerialDenseVector to RealVector

� void copy_data (const RealVector &drv, Epetra_SerialDenseVector &psdv)

copy RealVector to Epetra_SerialDenseVector

� void copy_data (const RealArray &dra, Epetra_SerialDenseVector &psdv)

copy RealArray to Epetra_SerialDenseVector

� void copy_data (const RealBaseVector &drbv, Epetra_SerialDenseVector &psdv)

copy RealBaseVector to Epetra_SerialDenseVector

� void copy_data (const Real � ptr, const int ptr_len, Epetra_SerialDenseVector &psdv)

copy Real � to Epetra_SerialDenseVector

� void copy_data (const RealMatrix &drm, Epetra_SerialDenseMatrix &psdm)

copy RealMatrix to Epetra_SerialDenseMatrix

� void copy_data (const RealMatrix &drm, Epetra_SerialSymDenseMatrix &pssdm)

copy RealMatrix to Epetra_SerialSymDenseMatrix

� void copy_data (const ::ColumnVector &cv, Epetra_SerialDenseVector &psdv)

copy NEWMAT::ColumnVector to Epetra_SerialDenseVector

� void copy_data (const ::Array � DDaceSamplePoint � &dspa, RealVectorArray &drva)

copy DDACE Array to RealVectorArray

� void copy_data (const ::Array � DDaceSamplePoint � &dspa, double � darray)

copy DDACE Array to RealVectorArray

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const DataInterface &data)

MPIPackBuffer insertion operator for DataInterface.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, DataInterface &data)

MPIUnpackBuffer extraction operator for DataInterface.

� ostream & operator � � (ostream &s, const DataInterface &data)

ostream insertion operator for DataInterface

� bool interface_compare (const DataInterface &di, void � search_di)

global comparison function for DataInterface

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const DataMethod &data)

MPIPackBuffer insertion operator for DataMethod.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, DataMethod &data)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 45

MPIUnpackBuffer extraction operator for DataMethod.

� ostream & operator � � (ostream &s, const DataMethod &data)

ostream insertion operator for DataMethod

� bool method_compare (const DataMethod &dm, void � search_dm)

global comparison function for DataMethod

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const DataResponses &data)

MPIPackBuffer insertion operator for DataResponses.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, DataResponses &data)

MPIUnpackBuffer extraction operator for DataResponses.

� ostream & operator � � (ostream &s, const DataResponses &data)

ostream insertion operator for DataResponses

� bool responses_compare (const DataResponses &dr, void � search_dr)

global comparison function for DataResponses

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const DataStrategy &data)

MPIPackBuffer insertion operator for DataStrategy.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, DataStrategy &data)

MPIUnpackBuffer extraction operator for DataStrategy.

� ostream & operator � � (ostream &s, const DataStrategy &data)

ostream insertion operator for DataStrategy

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const DataVariables &data)

MPIPackBuffer insertion operator for DataVariables.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, DataVariables &data)

MPIUnpackBuffer extraction operator for DataVariables.

� ostream & operator � � (ostream &s, const DataVariables &data)

ostream insertion operator for DataVariables

� bool variables_compare (const DataVariables &dv, void � search_dv)

global comparison function for DataVariables

� int salinas_main (int argc, char � argv[], MPI_Comm � comm)

subroutine interface to SALINAS simulation code

� bool operator== (const FundamentalVariables &vars1, const FundamentalVariables &vars2)

equality operator

� template � typename T � string asstring (const T &val)

Creates a string from the argument "val" using an ostringstream.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

46 DAKOTA Namespace Documentation

� bool operator== (const MergedVariables &vars1, const MergedVariables &vars2)

equality operator

� PACKBUF (int, MPI_INT)
� UNPACKBUF (int, MPI_INT)
� PACKSIZE (int, MPI_INT)
� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const int &data)

insert an int

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const u_int &data)

insert a u_int

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const long &data)

insert a long

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const u_long &data)

insert a u_long

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const short &data)

insert a short

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const u_short &data)

insert a u_short

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const char &data)

insert a char

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const u_char &data)

insert a u_char

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const double &data)

insert a double

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const float &data)

insert a float

� MPIPackBuffer & operator � � (MPIPackBuffer &buff, const bool &data)

insert a bool

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, int &data)

extract an int

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, u_int &data)

extract a u_int

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, long &data)

extract a long

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, u_long &data)

extract a u_long

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 47

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, short &data)

extract a short

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, u_short &data)

extract a u_short

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, char &data)

extract a char

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, u_char &data)

extract a u_char

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, double &data)

extract a double

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, float &data)

extract a float

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &buff, bool &data)

extract a bool

� int MPIPackSize (const int &data, const int num=1)

return packed size of an int

� int MPIPackSize (const u_int &data, const int num=1)

return packed size of a u_int

� int MPIPackSize (const long &data, const int num=1)

return packed size of a long

� int MPIPackSize (const u_long &data, const int num=1)

return packed size of a u_long

� int MPIPackSize (const short &data, const int num=1)

return packed size of a short

� int MPIPackSize (const u_short &data, const int num=1)

return packed size of a u_short

� int MPIPackSize (const char &data, const int num=1)

return packed size of a char

� int MPIPackSize (const u_char &data, const int num=1)

return packed size of a u_char

� int MPIPackSize (const double &data, const int num=1)

return packed size of a double

� int MPIPackSize (const float &data, const int num=1)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

48 DAKOTA Namespace Documentation

return packed size of a float

� int MPIPackSize (const bool &data, const int num=1)

return packed size of a bool

� void dn2f_ (int � n, int � p, Real � x, Calcrj, int � iv, int � liv, int � lv, Real � v, int � ui, void � ur, Vf)
� void dn2fb_ (int � n, int � p, Real � x, Real � b, Calcrj, int � iv, int � liv, int � lv, Real � v, int � ui, void

� ur, Vf)
� void dn2g_ (int � n, int � p, Real � x, Calcrj, Calcrj, int � iv, int � liv, int � lv, Real � v, int � ui, void � ur,

Vf)
� void dn2gb_ (int � n, int � p, Real � x, Real � b, Calcrj, Calcrj, int � iv, int � liv, int � lv, Real � v, int � ui,

void � ur, Vf)
� void divset_ (int � , int � , int � , int � , Real �)
� double dr7mdc_ (int �)
� void calcr (int � np, int � pp, Real � x, int � nfp, Real � r, int � ui, void � ur, Vf vf)
� void calcj (int � np, int � pp, Real � x, int � nfp, Real � J, int � ui, void � ur, Vf vf)
� double rnum1 (void)
� double rnum2 (void)
� void abort_handler (int code)

global function which handles serial or parallel aborts

� istream & operator � � (istream &s, ParamResponsePair &pair)

istream extraction operator for ParamResponsePair

� ostream & operator � � (ostream &s, const ParamResponsePair &pair)

ostream insertion operator for ParamResponsePair

� BiStream & operator � � (BiStream &s, ParamResponsePair &pair)

BiStream extraction operator for ParamResponsePair.

� BoStream & operator � � (BoStream &s, const ParamResponsePair &pair)

BoStream insertion operator for ParamResponsePair.

� MPIUnpackBuffer & operator � � (MPIUnpackBuffer &s, ParamResponsePair &pair)

MPIUnpackBuffer extraction operator for ParamResponsePair.

� MPIPackBuffer & operator � � (MPIPackBuffer &s, const ParamResponsePair &pair)

MPIPackBuffer insertion operator for ParamResponsePair.

� bool operator== (const ParamResponsePair &pair1, const ParamResponsePair &pair2)

equality operator

� bool operator!= (const ParamResponsePair &pair1, const ParamResponsePair &pair2)

inequality operator

� bool vars_asv_compare (const ParamResponsePair &database_pr, void � search_pr)

search function for a particular ParamResponsePair within a List

� bool eval_id_compare (const ParamResponsePair &pair, void � id)

search function for a particular ParamResponsePair within a List

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 49

� bool eval_id_sort_fn (const ParamResponsePair &pr1, const ParamResponsePair &pr2)

sort function for ParamResponsePair

� void print_restart (int argc, char � � argv, String print_dest)

print a restart file

� void print_restart_tabular (int argc, char � � argv, String print_dest)

print a restart file (tabular format)

� void read_neutral (int argc, char � � argv)

read a restart file (neutral file format)

� void repair_restart (int argc, char � � argv, String identifier_type)

repair a restart file by removing corrupted evaluations

� void concatenate_restart (int argc, char � � argv)

concatenate multiple restart files

Variables

� ParallelLibrary dummy_lib (0)

dummy ParallelLibrary object used for mandatory initializations when a real ParallelLibrary instance is
unavailable

� ProblemDescDB dummy_db (dummy_lib)

dummy ProblemDescDB object used for mandatory initializations when a real ProblemDescDB instance is
unavailable

� Graphics dakota_graphics

the global Dakota::Graphics object used by strategies, models, and approximations

� const int MAXPOSDEF = 10
� const int NONRANDOM = 0
� const int RANDOM = 1
� Dakota::GSL_Singleton GSL_RNG
� ostream � dakota_cout = &cout

DAKOTA stdout initially points to cout, but may be redirected to a tagged ofstream if there are concurrent
iterators.

� ostream � dakota_cerr = &cerr

DAKOTA stderr initially points to cerr, but may be redirected to a tagged ofstream if there are concurrent
iterators.

� PRPList data_pairs

list of all parameter/response pairs

� BoStream write_restart

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

50 DAKOTA Namespace Documentation

the restart binary output stream (doesn’t really need to be global anymore except for Parallel-
Library::abort_handler())

� int mc_ptr_int = 0

global pointer for ModelCenter API

� const int LARGE_SCALE = 100

7.1.1 Detailed Description

The primary namespace for DAKOTA.

The Dakota namespace encapsulates the core classes of the DAKOTA framework and prevents name
clashes with third-party libraries from VendorOptimizers and VendorPackages. The C++ source files defin-
ing these core classes reside in Dakota/src as � .[CH].

7.1.2 Function Documentation

7.1.2.1 void COLINOptimizer � coliny::DIRECT � ::set_method_parameters (void)

specialization of set_method_parameters() for DIRECT

7.1.2.2 void COLINOptimizer � coliny::Cobyla � ::set_method_parameters (void)

specialization of set_method_parameters() for Cobyla

7.1.2.3 void COLINOptimizer � coliny::APPS � ::set_method_parameters (void)

specialization of set_method_parameters() for APPS

7.1.2.4 void COLINOptimizer � coliny::PatternSearch � ::set_runtime_parameters ()

specialization of set_runtime_parameters() for PatternSearch

7.1.2.5 void COLINOptimizer � coliny::PatternSearch � ::set_method_parameters (void)

specialization of set_method_parameters() for PatternSearch

7.1.2.6 void COLINOptimizer � coliny::PEAreal � ::set_method_parameters (void)

specialization of set_method_parameters() for PEAreal

7.1.2.7 void COLINOptimizer � coliny::SolisWets � ::set_method_parameters (void)

specialization of set_method_parameters() for SolisWets

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

7.1 51

7.1.2.8 CommandShell & flush (CommandShell & shell)

convenient shell manipulator function to "flush" the shell

global convenience function for manipulating the shell; invokes the class member flush function.

7.1.2.9 String toUpper (const String & str)

Return upper-case version of argument.

Returns a String converted to upper case. Calls the String upper() method.

7.1.2.10 String toLower (const String & str)

Return lower-case version of argument.

Returns a String converted to lower case. Calls the String lower() method.

7.1.2.11 bool operator== (const FundamentalVariables & vars1, const FundamentalVariables &
vars2)

equality operator

Checks each fundamental array using operator== from data_types.C. Labels are ignored.

7.1.2.12 bool vars_asv_compare (const ParamResponsePair & database_pr, void � search_pr)
[inline]

search function for a particular ParamResponsePair within a List

a global function to compare the parameter values, ASV, & interface id of a particular database_pr (pre-
sumed to be in the global history list) with a passed in set of parameters, ASV, & interface id provided by
search_pr.

7.1.2.13 bool eval_id_compare (const ParamResponsePair & pair, void � id) [inline]

search function for a particular ParamResponsePair within a List

a global function to compare the evalId of a particular ParamResponsePair (from a List) with a passed in
evaluation id. � ((int �)id) construct casts void � to int � and then dereferences.

7.1.2.14 bool eval_id_sort_fn (const ParamResponsePair & pr1, const ParamResponsePair & pr2)
[inline]

sort function for ParamResponsePair

a global function used to sort a PRPList by evalId’s.

7.1.2.15 void print_restart (int argc, char � � argv, String print_dest)

print a restart file

Usage: "dakota_restart_util print dakota.rst"

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

52 DAKOTA Namespace Documentation

"dakota_restart_util to_neutral dakota.rst dakota.neu"

Prints all evals. in full precision to either stdout or a neutral file. The former is useful for ensuring that
duplicate detection is successful in a restarted run (e.g., starting a new method from the previous best), and
the latter is used for translating binary files between platforms.

7.1.2.16 void print_restart_tabular (int argc, char � � argv, String print_dest)

print a restart file (tabular format)

Usage: "dakota_restart_util to_pdb dakota.rst dakota.pdb"

"dakota_restart_util to_tabular dakota.rst dakota.txt"

Unrolls all data associated with a particular tag for all evaluations and then writes this data in a tabular
format (e.g., to a PDB database or MATLAB/TECPLOT data file).

7.1.2.17 void read_neutral (int argc, char � � argv)

read a restart file (neutral file format)

Usage: "dakota_restart_util from_neutral dakota.neu dakota.rst"

Reads evaluations from a neutral file. This is used for translating binary files between platforms.

7.1.2.18 void repair_restart (int argc, char � � argv, String identifier_type)

repair a restart file by removing corrupted evaluations

Usage: "dakota_restart_util remove 0.0 dakota_old.rst dakota_new.rst"

"dakota_restart_util remove_ids 2 7 13 dakota_old.rst dakota_new.rst"

Repairs a restart file by removing corrupted evaluations. The identifier for evaluation removal can be either
a double precision number (all evaluations having a matching response function value are removed) or a
list of integers (all evaluations with matching evaluation ids are removed).

7.1.2.19 void concatenate_restart (int argc, char � � argv)

concatenate multiple restart files

Usage: "dakota_restart_util cat dakota_1.rst ... dakota_n.rst dakota_new.rst"

Combines multiple restart files into a single restart database.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 8

DAKOTA Class Documentation

8.1 AllMergedVarConstraints Class Reference

Derived class within the VarConstraints hierarchy which combines the all and merged data views.

Inheritance diagram for AllMergedVarConstraints::

AllMergedVarConstraints

VarConstraints VariablesUtil

Public Member Functions

� AllMergedVarConstraints (const ProblemDescDB &problem_db)

constructor

� � AllMergedVarConstraints ()

destructor

� const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

� void continuous_lower_bounds (const RealVector &c_l_bnds)

set the active continuous variable lower bounds

� const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

� void continuous_upper_bounds (const RealVector &c_u_bnds)

set the active continuous variable upper bounds

54 DAKOTA Class Documentation

� const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

� void discrete_lower_bounds (const IntVector &d_l_bnds)

set the active discrete variable lower bounds

� const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

� void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

� RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

� RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

� IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

� IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

� void write (ostream &s) const

write a variable constraints object to an ostream

� void read (istream &s)

read a variable constraints object from an istream

Private Attributes

� RealVector allMergedLowerBnds

a continuous lower bounds array combining design, uncertain, and state variable types and merging con-
tinuous and discrete domains. The order is continuous design, discrete design, uncertain, continuous state,
and discrete state.

� RealVector allMergedUpperBnds

a continuous upper bounds array combining design, uncertain, and state variable types and merging con-
tinuous and discrete domains. The order is continuous design, discrete design, uncertain, continuous state,
and discrete state.

8.1.1 Detailed Description

Derived class within the VarConstraints hierarchy which combines the all and merged data views.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.1 AllMergedVarConstraints Class Reference 55

Derived variable constraints classes take different views of the design, uncertain, and state variable types
and the continuous and discrete domain types. The AllMergedVarConstraints derived class combines de-
sign, uncertain, and state variable types (all) and continuous and discrete domain types (merged). The
result is a single continuous lower bounds array (allMergedLowerBnds) and a single continuous upper
bounds array (allMergedUpperBnds). No iterators/strategies currently use this approach; it is included for
completeness and future capability.

8.1.2 Constructor & Destructor Documentation

8.1.2.1 AllMergedVarConstraints (const ProblemDescDB & problem_db)

constructor

Extract fundamental variable bounds and combine them into allMergedLowerBnds and allMergedUpper-
Bnds using utilities from VariablesUtil.

The documentation for this class was generated from the following files:

� AllMergedVarConstraints.H
� AllMergedVarConstraints.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

56 DAKOTA Class Documentation

8.2 AllMergedVariables Class Reference

Derived class within the Variables hierarchy which combines the all and merged data views.

Inheritance diagram for AllMergedVariables::

AllMergedVariables

Variables VariablesUtil

Public Member Functions

� AllMergedVariables ()

default constructor

� AllMergedVariables (const ProblemDescDB &problem_db)

standard constructor

� � AllMergedVariables ()

destructor

� size_t tv () const

Returns total number of vars.

� size_t cv () const

Returns number of active continuous vars.

� size_t dv () const

Returns number of active discrete vars.

� const RealVector & continuous_variables () const

return the active continuous variables

� void continuous_variables (const RealVector &c_vars)

set the active continuous variables

� const IntVector & discrete_variables () const

return the active discrete variables

� void discrete_variables (const IntVector &d_vars)

set the active discrete variables

� const StringArray & continuous_variable_labels () const

return the active continuous variable labels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.2 AllMergedVariables Class Reference 57

� void continuous_variable_labels (const StringArray &cv_labels)

set the active continuous variable labels

� const StringArray & discrete_variable_labels () const

return the active discrete variable labels

� void discrete_variable_labels (const StringArray &dv_labels)

set the active discrete variable labels

� size_t acv () const

returns total number of continuous vars

� size_t adv () const

returns total number of discrete vars

� RealVector all_continuous_variables () const

returns a single array with all continuous variables

� IntVector all_discrete_variables () const

returns a single array with all discrete variables

� StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

� StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

� StringArray all_variable_labels () const

returns a single array with all variable labels

� void read (istream &s)

read a variables object from an istream

� void write (ostream &s) const

write a variables object to an ostream

� void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

� void read_annotated (istream &s)

read a variables object in annotated format from an istream

� void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

� void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

� void read (BiStream &s)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

58 DAKOTA Class Documentation

read a variables object from the binary restart stream

� void write (BoStream &s) const

write a variables object to the binary restart stream

� void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

Private Member Functions

� void copy_rep (const Variables � vars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

� RealVector allMergedVars

a continuous array combining design, uncertain, and state variable types and merging continuous and
discrete domains. The order is continuous design, discrete design, uncertain, continuous state, and discrete
state.

� StringArray allMergedLabels

an array containing labels for continuous design, discrete design, uncertain, continuous state, and discrete
state variables

Friends

� bool operator== (const AllMergedVariables &vars1, const AllMergedVariables &vars2)

equality operator

8.2.1 Detailed Description

Derived class within the Variables hierarchy which combines the all and merged data views.

Derived variables classes take different views of the design, uncertain, and state variable types and the
continuous and discrete domain types. The AllMergedVariables derived class combines design, uncertain,
and state variable types (all) and continuous and discrete domain types (merged). The result is a single
array of continuous variables (allMergedVars). No iterators/strategies currently use this approach; it is
included for completeness and future capability.

8.2.2 Constructor & Destructor Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.2 AllMergedVariables Class Reference 59

8.2.2.1 AllMergedVariables (const ProblemDescDB & problem_db)

standard constructor

Extract fundamental variable types and labels and combine them into allMergedVars and allMergedLabels
using utilities from VariablesUtil.

The documentation for this class was generated from the following files:

� AllMergedVariables.H
� AllMergedVariables.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

60 DAKOTA Class Documentation

8.3 AllVarConstraints Class Reference

Derived class within the VarConstraints hierarchy which employs the all data view.

Inheritance diagram for AllVarConstraints::

AllVarConstraints

VarConstraints VariablesUtil

Public Member Functions

� AllVarConstraints (const ProblemDescDB &problem_db)

constructor

� � AllVarConstraints ()

destructor

� const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

� void continuous_lower_bounds (const RealVector &c_l_bnds)

set the active continuous variable lower bounds

� const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

� void continuous_upper_bounds (const RealVector &c_u_bnds)

set the active continuous variable upper bounds

� const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

� void discrete_lower_bounds (const IntVector &d_l_bnds)

set the active discrete variable lower bounds

� const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

� void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

� RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.3 AllVarConstraints Class Reference 61

� RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

� IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

� IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

� void write (ostream &s) const

write a variable constraints object to an ostream

� void read (istream &s)

read a variable constraints object from an istream

Private Attributes

� RealVector allContinuousLowerBnds

a continuous lower bounds array combining continuous design, uncertain, and continuous state variable
types (all view).

� RealVector allContinuousUpperBnds

a continuous upper bounds array combining continuous design, uncertain, and continuous state variable
types (all view).

� IntVector allDiscreteLowerBnds

a discrete lower bounds array combining discrete design and discrete state variable types (all view).

� IntVector allDiscreteUpperBnds

a discrete upper bounds array combining discrete design and discrete state variable types (all view).

� size_t numCDV

number of continuous design variables

� size_t numDDV

number of discrete design variables

� size_t numUV

number of uncertain variables

� size_t numCSV

number of continuous state variables

� size_t numDSV

number of discrete state variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

62 DAKOTA Class Documentation

8.3.1 Detailed Description

Derived class within the VarConstraints hierarchy which employs the all data view.

Derived variable constraints classes take different views of the design, uncertain, and state variable types
and the continuous and discrete domain types. The AllVarConstraints derived class combines design, un-
certain, and state variable types but separates continuous and discrete domain types. The result is combined
continuous bounds arrays (allContinuousLowerBnds, allContinuousUpperBnds) and combined discrete
bounds arrays (allDiscreteLowerBnds, allDiscreteUpperBnds). Parameter and DACE studies currently
use this approach (see Variables::get_variables(problem_db) for variables type selection; variables type is
passed to the VarConstraints constructor in Model).

8.3.2 Constructor & Destructor Documentation

8.3.2.1 AllVarConstraints (const ProblemDescDB & problem_db)

constructor

Extract fundamental lower and upper bounds and combine them into allContinuousLowerBnds,
allContinuousUpperBnds, allDiscreteLowerBnds, and allDiscreteUpperBnds using utilities from
VariablesUtil.

The documentation for this class was generated from the following files:

� AllVarConstraints.H
� AllVarConstraints.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.4 AllVariables Class Reference 63

8.4 AllVariables Class Reference

Derived class within the Variables hierarchy which employs the all data view.

Inheritance diagram for AllVariables::

AllVariables

Variables VariablesUtil

Public Member Functions

� AllVariables ()

default constructor

� AllVariables (const ProblemDescDB &problem_db)

standard constructor

� � AllVariables ()

destructor

� size_t tv () const

Returns total number of vars.

� size_t cv () const

Returns number of active continuous vars.

� size_t dv () const

Returns number of active discrete vars.

� const RealVector & continuous_variables () const

return the active continuous variables

� void continuous_variables (const RealVector &c_vars)

set the active continuous variables

� const IntVector & discrete_variables () const

return the active discrete variables

� void discrete_variables (const IntVector &d_vars)

set the active discrete variables

� const StringArray & continuous_variable_labels () const

return the active continuous variable labels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

64 DAKOTA Class Documentation

� void continuous_variable_labels (const StringArray &cv_labels)

set the active continuous variable labels

� const StringArray & discrete_variable_labels () const

return the active discrete variable labels

� void discrete_variable_labels (const StringArray &dv_labels)

set the active discrete variable labels

� size_t acv () const

returns total number of continuous vars

� size_t adv () const

returns total number of discrete vars

� RealVector all_continuous_variables () const

returns a single array with all continuous variables

� IntVector all_discrete_variables () const

returns a single array with all discrete variables

� StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

� StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

� StringArray all_variable_labels () const

returns a single array with all variable labels

� void read (istream &s)

read a variables object from an istream

� void write (ostream &s) const

write a variables object to an ostream

� void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

� void read_annotated (istream &s)

read a variables object in annotated format from an istream

� void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

� void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

� void read (BiStream &s)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.4 AllVariables Class Reference 65

read a variables object from the binary restart stream

� void write (BoStream &s) const

write a variables object to the binary restart stream

� void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

Private Member Functions

� void copy_rep (const Variables � vars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

� RealVector allContinuousVars

a continuous array combining all of the continuous variables (design, uncertain, and state).

� IntVector allDiscreteVars

a discrete array combining all of the discrete variables (design and state).

� StringArray allContinuousLabels

a label array combining all of the continuous variable labels (design, uncertain, and state).

� StringArray allDiscreteLabels

a label array combining all of the discrete variable labels (design and state).

� size_t numCDV

number of continuous design variables

� size_t numDDV

number of discrete design variables

� size_t numUV

number of uncertain variables

� size_t numCSV

number of continuous state variables

� size_t numDSV

number of discrete state variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

66 DAKOTA Class Documentation

Friends

� bool operator== (const AllVariables &vars1, const AllVariables &vars2)

equality operator

8.4.1 Detailed Description

Derived class within the Variables hierarchy which employs the all data view.

Derived variables classes take different views of the design, uncertain, and state variable types and the
continuous and discrete domain types. The AllVariables derived class combines design, uncertain, and state
variable types but separates continuous and discrete domain types. The result is a single array of continuous
variables (allContinuousVars) and a single array of discrete variables (allDiscreteVars). Parameter and
DACE studies currently use this approach (see Variables::get_variables(problem_db)).

8.4.2 Constructor & Destructor Documentation

8.4.2.1 AllVariables (const ProblemDescDB & problem_db)

standard constructor

Extract fundamental variable types and labels and combine them into allContinuousVars, allDiscreteVars,
allContinuousLabels, and allDiscreteLabels using utilities from VariablesUtil.

The documentation for this class was generated from the following files:

� AllVariables.H
� AllVariables.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.5 AnalysisCode Class Reference 67

8.5 AnalysisCode Class Reference

Base class providing common functionality for derived classes (SysCallAnalysisCode and
ForkAnalysisCode) which spawn separate processes for managing simulations.

Inheritance diagram for AnalysisCode::

AnalysisCode

ForkAnalysisCode SysCallAnalysisCode

Public Member Functions

� void define_filenames (const int id)

define modified filenames from user input by handling Unix temp file and tagging options

� void write_parameters_file (const Variables &vars, const IntArray &asv, const int id)

write the variables and active set vector objects to the parameters file in either standard or aprepro format

� void read_results_file (Response &response, const int id)

read the response object from the results file

� const StringArray & program_names () const

return programNames

� const String & input_filter_name () const

return iFilterName

� const String & output_filter_name () const

return oFilterName

� const String & modified_parameters_filename () const

return modifiedParamsFileName

� const String & modified_results_filename () const

return modifiedResFileName

� const String & results_fname (const int id) const

return the entry in resultsFNameList corresponding to id

� void suppress_output_flag (const bool flag)

set suppressOutputFlag

� bool suppress_output_flag () const

return suppressOutputFlag

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

68 DAKOTA Class Documentation

Protected Member Functions

� AnalysisCode (const ProblemDescDB &problem_db)

constructor

� virtual � AnalysisCode ()

destructor

Protected Attributes

� bool suppressOutputFlag

flag set by master processor to suppress output from slave processors

� bool verboseFlag

flag for additional analysis code output if method verbosity is set

� bool fileTagFlag

flags tagging of parameter/results files

� bool fileSaveFlag

flags retention of parameter/results files

� bool apreproFlag

flags use of the APREPRO (the Sandia "A PRE PROcessor" utility) format for parameter files

� String iFilterName

the name of the input filter (input_filter user specification)

� String oFilterName

the name of the output filter (output_filter user specification)

� StringArray programNames

the names of the analysis code programs (analysis_drivers user specification)

� size_t numPrograms

the number of analysis code programs (length of programNames list)

� String parametersFileName

the name of the parameters file from user specification

� String modifiedParamsFileName

the parameters file name actually used (modified with tagging or temp files)

� String resultsFileName

the name of the results file from user specification

� String modifiedResFileName

the results file name actually used (modified with tagging or temp files)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.5 AnalysisCode Class Reference 69

� StringList parametersFNameList

list of parameters file names used in spawning function evaluations

� StringList resultsFNameList

list of results file names used in spawning function evaluations

� IntList fileNameKey

stores function evaluation identifiers to allow key-based retrieval of file names from parametersFNameList
and resultsFNameList

Private Attributes

� ParallelLibrary & parallelLib

reference to the ParallelLibrary object. Used in define_filenames().

8.5.1 Detailed Description

Base class providing common functionality for derived classes (SysCallAnalysisCode and
ForkAnalysisCode) which spawn separate processes for managing simulations.

The AnalysisCode class hierarchy provides simulation spawning services for ApplicationInterface derived
classes and alleviates these classes of some of the specifics of simulation code management. The hierarchy
does not employ the letter-envelope technique since the ApplicationInterface derived classes instantiate the
appropriate derived AnalysisCode class directly.

The documentation for this class was generated from the following files:

� AnalysisCode.H
� AnalysisCode.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

70 DAKOTA Class Documentation

8.6 Analyzer Class Reference

Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy.

Inheritance diagram for Analyzer::

Analyzer

Iterator

NonD PStudyDACE

NonDReliability NonDSampling DDACEDesignCompExp FSUDesignCompExp ParamStudy

NonDLHSSampling NonDPCESampling

Public Member Functions

� const VariablesArray & all_variables () const

return the complete set of evaluated variables

� const RealVectorArray & all_c_variables () const

return the complete set of evaluated continuous variables

� const ResponseArray & all_responses () const

return the complete set of computed responses

� const RealVectorArray & all_fn_responses () const

return the complete set of computed function responses

Protected Member Functions

� Analyzer ()

default constructor

� Analyzer (Model &model)

standard constructor

� Analyzer (NoDBBaseConstructor, Model &model)

alternate constructor for instantiations "on the fly"

� � Analyzer ()

destructor

� virtual void update_best (const RealVector &vars, const Response &response, const int eval_num)

compares current evaluation to best evaluation and updates best

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.6 Analyzer Class Reference 71

� virtual void get_parameter_sets (bool vbd_change_seq_flag)

Returns one block of samples (ndim � num_samples).

� void evaluate_parameter_sets (bool vars_flag, bool resp_flag, bool fns_flag, bool best_flag)

perform function evaluations to map parameter sets (allVariables/allCVariables/allDVariables) into re-
sponse sets (allResponses/allFnResponses/allGradResponses)

� void var_based_decomp (const int ndim, const int num_samples)
� void volumetric_quality (int ndim, int num_samples, double � sample_points)

Calculation of volumetric quality measures.

� void print_vbd (ostream &s, const RealVector &S, const RealVector &T) const

Printing of VBD results.

Protected Attributes

� VariablesArray allVariables

array of all variables evaluated

� RealVectorArray allCVariables

array of all continuous variables evaluated (subset of allVariables)

� ResponseArray allResponses

array of all responses computed

� RealVectorArray allFnResponses

array of all function responses computed (subset of allResponses)

� StringArray allHeaders

array of headers to insert into output while evaluating allCVariables

� bool qualityFlag

flag to indicated if quality metrics were calculated

� double chiMeas

quality measures

� double dMeas

quality measures

� double hMeas

quality measures

� double tauMeas

quality measures

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

72 DAKOTA Class Documentation

8.6.1 Detailed Description

Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy.

The Analyzer class provides common data and functionality for various types of systems analysis, including
nondeterministic analysis, design of experiments, and parameter studies.

8.6.2 Constructor & Destructor Documentation

8.6.2.1 Analyzer (Model & model) [protected]

standard constructor

This constructor extracts inherited data for the optimizer and least squares branches and performs sanity
checking on constraint settings.

8.6.2.2 Analyzer (NoDBBaseConstructor, Model & model) [protected]

alternate constructor for instantiations "on the fly"

This constructor extracts inherited data for the optimizer and least squares branches and performs sanity
checking on constraint settings.

8.6.3 Member Function Documentation

8.6.3.1 void evaluate_parameter_sets (bool vars_flag, bool resp_flag, bool fns_flag, bool best_flag)
[protected]

perform function evaluations to map parameter sets (allVariables/allCVariables/allDVariables) into re-
sponse sets (allResponses/allFnResponses/allGradResponses)

Convenience function for derived classes with sets of function evaluations to perform (e.g., NonDSampling,
DDACEDesignCompExp, FSUDesignCompExp, ParamStudy).

8.6.3.2 void var_based_decomp (const int ndim, const int num_samples) [protected]

Calculation of sensitivity indices obtained by variance based decomposition. These indices are obtained by
the Saltelli version of the Sobol’ VBD which uses (K+2) � N function evaluations, where K is the number
of dimensions (uncertain vars) and N is the number of samples.

8.6.3.3 void volumetric_quality (int ndim, int num_samples, double � sample_points)
[protected]

Calculation of volumetric quality measures.

Calculation of volumetric quality measures developed by FSU.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.6 Analyzer Class Reference 73

8.6.3.4 void print_vbd (ostream & s, const RealVector & S, const RealVector & T) const
[protected]

Printing of VBD results.

printing of variance based decomposition indices.

The documentation for this class was generated from the following files:

� DakotaAnalyzer.H
� DakotaAnalyzer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

74 DAKOTA Class Documentation

8.7 ANNSurf Class Reference

Derived approximation class for artificial neural networks.

Inheritance diagram for ANNSurf::

ANNSurf

Approximation

Public Member Functions

� ANNSurf (const ProblemDescDB &problem_db, const size_t &num_acv)

constructor

� � ANNSurf ()

destructor

Protected Member Functions

� int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� void find_coefficients ()

calculate the data fit coefficients using the currentPoints list of SurrogateDataPoints

� Real get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

Private Attributes

� ANNApprox � annObject

pointer to the ANNApprox object (see VendorPackages/ann for class declaration)

8.7.1 Detailed Description

Derived approximation class for artificial neural networks.

The ANNSurf class uses a layered-perceptron artificial neural network. Unlike most neural networks,
it does not employ a back-propagation approach to training. Rather it uses a direct training approach

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.7 ANNSurf Class Reference 75

developed by Prof. David Zimmerman of the University of Houston and modified by Tom Paez and Chris
O’Gorman of Sandia. It is more computationally efficient that back-propagation networks, but relative
accuracy can be a concern.

The documentation for this class was generated from the following files:

� ANNSurf.H
� ANNSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

76 DAKOTA Class Documentation

8.8 ApplicationInterface Class Reference

Derived class within the interface class hierarchy for supporting interfaces to simulation codes.

Inheritance diagram for ApplicationInterface::

ApplicationInterface

Interface

DirectFnApplicInterface ForkApplicInterface GridApplicInterface SysCallApplicInterface

Protected Member Functions

� ApplicationInterface (const ProblemDescDB &problem_db, const size_t &num_fns)

constructor

� � ApplicationInterface ()

destructor

� void init_communicators (const IntArray &message_lengths, const int &max_iterator_concurrency)

allocate communicator partitions for concurrent evaluations within an iterator and concurrent multipro-
cessor analyses within an evaluation.

� void reset_communicators (const IntArray &message_lengths)

reset the local parallel partition data for an interface (the partitions are already allocated in
ParallelLibrary).

� void free_communicators ()

deallocate communicator partitions for concurrent evaluations within an iterator and concurrent multipro-
cessor analyses within an evaluation.

� void init_serial ()
� int asynch_local_evaluation_concurrency () const

return asynchLocalEvalConcurrency

� String interface_synchronization () const

return interfaceSynchronization

� void map (const Variables &vars, const IntArray &asv, Response &response, const bool asynch_-
flag=false)

Provides a "mapping" of variables to responses using a simulation. Protected due to Interface letter-
envelope idiom.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.8 ApplicationInterface Class Reference 77

� void manage_failure (const Variables &vars, const IntArray &asv, Response &response, int failed_-
eval_id)

manages a simulation failure using abort/retry/recover/continuation

� const ResponseArray & synch ()

executes a blocking schedule for asynchronous evaluations in the beforeSynchPRPList queue and returns
all jobs

� const ResponseList & synch_nowait ()

executes a nonblocking schedule for asynchronous evaluations in the beforeSynchPRPList queue and re-
turns a partial list of completed jobs

� void serve_evaluations ()

run on evaluation servers to serve the iterator master

� void stop_evaluation_servers ()

used by the iterator master to terminate evaluation servers

� virtual void derived_map (const Variables &vars, const IntArray &asv, Response &response, int
fn_eval_id)=0

Called by map() and other functions to execute the simulation in synchronous mode. The portion of per-
forming an evaluation that is specific to a derived class.

� virtual void derived_map_asynch (const ParamResponsePair &pair)=0

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of per-
forming an asynchronous evaluation that is specific to a derived class.

� virtual void derived_synch (PRPList &prp_list)=0

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version waits for at least one
completion.

� virtual void derived_synch_nowait (PRPList &prp_list)=0

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version is nonblocking and
will return without any completions if none are immediately available.

� virtual void clear_bookkeeping ()

clears any bookkeeping in derived classes

� void self_schedule_analyses ()

blocking self-schedule of all analyses within a function evaluation using message passing

� void serve_analyses_synch ()

serve the master analysis scheduler and manage one synchronous analysis job at a time

� virtual int derived_synchronous_local_analysis (const int &analysis_id)=0

Execute a particular analysis (identified by analysis_id) synchronously on the local processor. Used for the
derived class specifics within ApplicationInterface::serve_analyses_synch().

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

78 DAKOTA Class Documentation

Protected Attributes
� ParallelLibrary & parallelLib

reference to the ParallelLibrary object used to manage MPI partitions for the concurrent evaluations and
concurrent analyses parallelism levels

� bool suppressOutput

flag for suppressing output on slave processors

� int evalCommSize

size of evalComm

� int evalCommRank

processor rank within evalComm

� int evalServerId

evaluation server identifier

� bool eaDedMasterFlag

flag for dedicated master partitioning at ea level

� int analysisCommSize

size of analysisComm

� int analysisCommRank

processor rank within analysisComm

� int analysisServerId

analysis server identifier

� int numAnalysisServers

number of analysis servers

� bool multiProcAnalysisFlag

flag for multiprocessor analysis partitions

� bool asynchLocalAnalysisFlag

flag for asynchronous local parallelism of analyses

� int asynchLocalAnalysisConcurrency

limits the number of concurrent analyses in asynchronous local scheduling and specifies hybrid concurrency
when message passing

� StringArray analysisDrivers

the set of analyses within each function evaluation (from the analysis_drivers interface specification)

� int numAnalysisDrivers

length of analysisDrivers list

� String2DArray analysisComponents

the set of optional analysis components used by the analysis drivers in completing a simulationwithin each
function evaluation (from the analysis_drivers interface specification)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.8 ApplicationInterface Class Reference 79

Private Member Functions

� bool duplication_detect (const Variables &vars, Response &response, const bool asynch_flag)

checks data_pairs and beforeSynchPRPList to see if the current evaluation request has already been per-
formed or queued

� void self_schedule_evaluations ()

blocking self-schedule of all evaluations in beforeSynchPRPList using message passing; executes on
iteratorComm master

� void static_schedule_evaluations ()

blocking static schedule of all evaluations in beforeSynchPRPList using message passing; executes on
iteratorComm master

� void asynchronous_local_evaluations (PRPList &prp_list)

perform all jobs in prp_list using asynchronous approaches on the local processor

� void synchronous_local_evaluations (PRPList &prp_list)

perform all jobs in prp_list using synchronous approaches on the local processor

� void asynchronous_local_evaluations_nowait (PRPList &prp_list)

launch new jobs in prp_list asynchronously (if capacity is available), perform nonblocking query of all
running jobs, and process any completed jobs

� void serve_evaluations_synch ()

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time

� void serve_evaluations_asynch ()

serve the evaluation message passing schedulers and manage multiple asynchronous evaluations

� void serve_evaluations_peer ()

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time as part
of the 1st peer

� void reset_evaluation_communicators (const IntArray &message_lengths)

convenience function for updating the local evaluation partition data following
ParallelLibrary::init_evaluation_communicators().

� void reset_analysis_communicators ()

convenience function for updating the local analysis partition data following
ParallelLibrary::init_analysis_communicators().

� const ParamResponsePair & get_source_pair (const Variables &target_vars)

convenience function for the continuation approach in manage_failure() for finding the nearest successful
"source" evaluation to the failed "target"

� void continuation (const Variables &target_vars, const IntArray &asv, Response &response, const
ParamResponsePair &source_pair, int failed_eval_id)

performs a 0th order continuation method to step from a successful "source" evaluation to the failed "tar-
get". Invoked by manage_failure() for failAction == "continuation".

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

80 DAKOTA Class Documentation

Private Attributes

� int worldSize

size of MPI_COMM_WORLD

� int worldRank

processor rank within MPI_COMM_WORLD

� int iteratorCommSize

size of iteratorComm

� int iteratorCommRank

processor rank within iteratorComm

� bool ieMessagePass

flag for message passing at ie scheduling level

� int numEvalServers

number of evaluation servers

� bool eaMessagePass

flag for message passing at ea scheduling level

� int procsPerAnalysis

processors per analysis servers

� int lenVarsMessage

length of a MPIPackBuffer containing a Variables object; computed in Model::init_communicators()

� int lenVarsASVMessage

length of a MPIPackBuffer containing a Variables object and an active set vector object; computed in
Model::init_communicators()

� int lenResponseMessage

length of a MPIPackBuffer containing a Response object; computed in Model::init_communicators()

� int lenPRPairMessage

length of a MPIPackBuffer containing a ParamResponsePair object; computed in
Model::init_communicators()

� String evalScheduling

user specification of evaluation scheduling algorithm (self, static, or no spec). Used for manual overrides
of the auto-configure logic in ParallelLibrary::resolve_inputs().

� String analysisScheduling

user specification of analysis scheduling algorithm (self, static, or no spec). Used for manual overrides of
the auto-configure logic in ParallelLibrary::resolve_inputs().

� int asynchLocalEvalConcurrency

limits the number of concurrent evaluations in asynchronous local scheduling and specifies hybrid concur-
rency when message passing

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.8 ApplicationInterface Class Reference 81

� String interfaceSynchronization

interface synchronization specification: synchronous (default) or asynchronous

� bool headerFlag

used by synch_nowait to manage output frequency (since this function may be called many times prior to
any completions)

� bool asvControlFlag

used to manage a user request to deactivate the active set vector control. true = modify the ASV each
evaluation as appropriate (default); false = ASV values are static so that the user need not check them on
each evaluation.

� bool evalCacheFlag

used to manage a user request to deactivate the function evaluation cache (i.e., queries and insertions using
the data_pairs list).

� bool restartFileFlag

used to manage a user request to deactivate the restart file (i.e., insertions into write_restart).

� IntArray defaultASV

the static ASV values used when the user has selected asvControl = off

� String failAction

mitigation action for captured simulation failures: abort, retry, recover, or continuation

� int failRetryLimit

limit on the number of retries for the retry failAction

� RealVector failRecoveryFnVals

the dummy function values used for the recover failAction

� IntList historyDuplicateIds

used to bookkeep fnEvalId of asynchronous evaluations which duplicate data_pairs evaluations

� ResponseList historyDuplicateResponses

used to bookkeep response of asynchronous evaluations which duplicate data_pairs evaluations

� IntList beforeSynchDuplicateIds

used to bookkeep fnEvalId of asynchronous evaluations which duplicate queued beforeSynchPRPList eval-
uations

� SizetList beforeSynchDuplicateIndices

used to bookkeep beforeSynchPRPList index of asynchronous evaluations which duplicate queued before-
SynchPRPList evaluations

� ResponseList beforeSynchDuplicateResponses

used to bookkeep response of asynchronous evaluations which duplicate queued beforeSynchPRPList eval-
uations

� IntList runningList

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

82 DAKOTA Class Documentation

used by asynchronous_local_nowait to bookkeep which jobs are running

� PRPList beforeSynchPRPList

used to bookkeep vars/asv/response of nonduplicate asynchronous evaluations. This is the queue of
jobs populated by asynchronous map() invocations which is later scheduled on a call to synch() or
synch_nowait().

8.8.1 Detailed Description

Derived class within the interface class hierarchy for supporting interfaces to simulation codes.

ApplicationInterface provides an interface class for performing parameter to response mappings using sim-
ulation code(s). It provides common functionality for a number of derived classes and contains the majority
of all of the scheduling algorithms in DAKOTA. The derived classes provide the specifics for managing
code invocations using system calls, forks, direct procedure calls, or distributed resource facilities.

8.8.2 Member Function Documentation

8.8.2.1 void init_serial () [protected, virtual]

DataInterface.C defaults of 0 servers are needed to distinguish an explicit user request for 1 server (se-
rialization of a parallelism level) from no user request (use parallel auto-config). This default causes
problems when init_communicators() is not called for an interface object (e.g., static scheduling fails in
DirectFnApplicInterface::derived_map() for NestedModel::optionalInterface). This is the reason for this
function: to reset certain defaults for interface objects that are used serially.

Reimplemented from Interface.

8.8.2.2 void map (const Variables & vars, const IntArray & asv, Response & response, const bool
asynch_flag = false) [protected, virtual]

Provides a "mapping" of variables to responses using a simulation. Protected due to Interface letter-
envelope idiom.

The function evaluator for application interfaces. Called from derived_compute_response() and derived_-
asynch_compute_response() in derived Model classes. If asynch_flag is not set, perform a blocking eval-
uation (using derived_map()). If asynch_flag is set, add the job to the beforeSynchPRPList queue for
execution by one of the scheduler routines in synch() or synch_nowait(). Duplicate function evaluations
are detected with duplication_detect().

Reimplemented from Interface.

8.8.2.3 const ResponseArray & synch () [protected, virtual]

executes a blocking schedule for asynchronous evaluations in the beforeSynchPRPList queue and returns
all jobs

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.8 ApplicationInterface Class Reference 83

This function provides blocking synchronization for all cases of asynchronous evaluations, including the
local asynchronous case (background system call, nonblocking fork, & multithreads), the message passing
case, and the hybrid case. Called from derived_synchronize() in derived Model classes.

Reimplemented from Interface.

8.8.2.4 const ResponseList & synch_nowait () [protected, virtual]

executes a nonblocking schedule for asynchronous evaluations in the beforeSynchPRPList queue and re-
turns a partial list of completed jobs

This function will eventually provide nonblocking synchronization for all cases of asynchronous evalua-
tions, however it currently supports only the local asynchronous case since nonblocking message passing
schedulers have not yet been implemented. Called from derived_synchronize_nowait() in derived Model
classes.

Reimplemented from Interface.

8.8.2.5 void serve_evaluations () [protected, virtual]

run on evaluation servers to serve the iterator master

Invoked by the serve() function in derived Model classes. Passes control to serve_evaluations_asynch(),
serve_evaluations_peer(), or serve_evaluations_synch() according to specified concurrency and self/static
scheduler configuration.

Reimplemented from Interface.

8.8.2.6 void stop_evaluation_servers () [protected, virtual]

used by the iterator master to terminate evaluation servers

This code is executed on the iteratorComm rank 0 processor when iteration on a particular model is com-
plete. It sends a termination signal (tag = 0 instead of a valid fn_eval_id) to each of the slave analysis
servers. NOTE: This function is called from the Strategy layer even when in serial mode. Therefore, use
iteratorCommSize to provide appropriate fall through behavior.

Reimplemented from Interface.

8.8.2.7 void self_schedule_analyses () [protected]

blocking self-schedule of all analyses within a function evaluation using message passing

This code is called from derived classes to provide the master portion of a master-slave algorithm for the
dynamic self-scheduling of analyses among slave servers. It is patterned after self_schedule_evaluations().
It performs no analyses locally and matches either serve_analyses_synch() or serve_analyses_asynch() on
the slave servers, depending on the value of asynchLocalAnalysisConcurrency. Self-scheduling approach
assigns jobs in 2 passes. The 1st pass gives each server the same number of jobs (equal to asynchLocal-
AnalysisConcurrency). The 2nd pass assigns the remaining jobs to slave servers as previous jobs are com-

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

84 DAKOTA Class Documentation

pleted. Single- and multilevel parallel use intra- and inter-communicators, respectively, for send/receive.
Specific syntax is encapsulated within ParallelLibrary.

8.8.2.8 void serve_analyses_synch () [protected]

serve the master analysis scheduler and manage one synchronous analysis job at a time

This code is called from derived classes to run synchronous analyses on slave processors. The slaves receive
requests (blocking receive), do local derived_map_ac’s, and return codes. This is done continuously until
a termination signal is received from the master. It is patterned after serve_evaluations_synch().

8.8.2.9 bool duplication_detect (const Variables & vars, Response & response, const bool
asynch_flag) [private]

checks data_pairs and beforeSynchPRPList to see if the current evaluation request has already been per-
formed or queued

Check incoming evaluation request for duplication with content of data_pairs and beforeSynchPRPList.
If duplication is detected, return true, else return false. Manage bookkeeping with historyDuplicate and
beforeSynchDuplicate lists. Called from map(). Note that the list searches can get very expensive if a
long list is searched on every new function evaluation (either from a large number of previous jobs, a large
number of pending jobs, or both). For this reason, a user request for deactivation of the evaluation cache
results in a complete bypass of duplication_detect(), even though a beforeSynchPRPList search would still
be meaningful. Since the intent of this request is to streamline operations, both list searches are bypassed.

8.8.2.10 void self_schedule_evaluations () [private]

blocking self-schedule of all evaluations in beforeSynchPRPList using message passing; executes on
iteratorComm master

This code is called from synch() to provide the master portion of a master-slave algorithm for the dynamic
self-scheduling of evaluations among slave servers. It performs no evaluations locally and matches either
serve_evaluations_synch() or serve_evaluations_asynch() on the slave servers, depending on the value of
asynchLocalEvalConcurrency. Self-scheduling approach assigns jobs in 2 passes. The 1st pass gives each
server the same number of jobs (equal to asynchLocalEvalConcurrency). The 2nd pass assigns the re-
maining jobs to slave servers as previous jobs are completed. Single- and multilevel parallel use intra- and
inter-communicators, respectively, for send/receive. Specific syntax is encapsulated within ParallelLibrary.

8.8.2.11 void static_schedule_evaluations () [private]

blocking static schedule of all evaluations in beforeSynchPRPList using message passing; executes on
iteratorComm master

This code runs on the iteratorCommRank 0 processor (the iterator) and is called from synch() in order to
assign a static schedule. It matches serve_evaluations_peer() for any other processors within the 1st eval-
uation partition and serve_evaluations_synch()/serve_evaluations_asynch() for all other evaluation parti-
tions (depending on asynchLocalEvalConcurrency). It performs function evaluations locally for its portion
of the static schedule using either asynchronous_local_evaluations() or synchronous_local_evaluations().
Single-level and multilevel parallel use intra- and inter-communicators, respectively, for send/receive. Spe-
cific syntax is encapsulated within ParallelLibrary. The iteratorCommRank 0 processor assigns the static
schedule since it is the only processor with access to beforeSynchPRPList (it runs the iterator and calls

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.8 ApplicationInterface Class Reference 85

synchronize). The alternate design of each peer selecting its own jobs using the modulus operator would
be applicable if execution of this function (and therefore the job list) were distributed.

8.8.2.12 void asynchronous_local_evaluations (PRPList & prp_list) [private]

perform all jobs in prp_list using asynchronous approaches on the local processor

This function provides blocking synchronization for the local asynch case (background system call, non-
blocking fork, or threads). It can be called from synch() for a complete local scheduling of all asyn-
chronous jobs or from static_schedule_evaluations() to perform a local portion of the total job set. It
uses the derived_map_asynch() to initiate asynchronous evaluations and derived_synch() to capture com-
pleted jobs, and mirrors the self_schedule_evaluations() message passing scheduler as much as possible
(derived_synch() is modeled after MPI_Waitsome()).

8.8.2.13 void synchronous_local_evaluations (PRPList & prp_list) [private]

perform all jobs in prp_list using synchronous approaches on the local processor

This function provides blocking synchronization for the local synchronous case (foreground system call,
blocking fork, or procedure call from derived_map()). It is called from static_schedule_evaluations() to
perform a local portion of the total job set.

8.8.2.14 void asynchronous_local_evaluations_nowait (PRPList & prp_list) [private]

launch new jobs in prp_list asynchronously (if capacity is available), perform nonblocking query of all
running jobs, and process any completed jobs

This function provides nonblocking synchronization for the local asynch case (background system call,
nonblocking fork, or threads). It is called from synch_nowait() and passed the complete set of all asyn-
chronous jobs (beforeSynchPRPList). It uses derived_map_asynch() to initiate asynchronous evaluations
and derived_synch_nowait() to capture completed jobs in nonblocking mode. It mirrors a nonblocking
message passing scheduler as much as possible (derived_synch_nowait() modeled after MPI_Testsome()).
The results of this function are rawResponseList and completionList. Since rawResponseList is in no par-
ticular order, completionList must be used as a key. It is assumed that the incoming prp_list contains only
active and new jobs - i.e., all completed jobs are cleared by synch_nowait().

8.8.2.15 void serve_evaluations_synch () [private]

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time

This code is invoked by serve_evaluations() to perform one synchronous job at a time on each slave/peer
server. The servers receive requests (blocking receive), do local synchronous maps, and return re-
sults. This is done continuously until a termination signal is received from the master (sent via
stop_evaluation_servers()).

8.8.2.16 void serve_evaluations_asynch () [private]

serve the evaluation message passing schedulers and manage multiple asynchronous evaluations

This code is invoked by serve_evaluations() to perform multiple asynchronous jobs on each slave/peer
server. The servers test for any incoming jobs, launch any new jobs, process any completed jobs, and
return any results. Each of these components is nonblocking, although the server loop continues until a
termination signal is received from the master (sent via stop_evaluation_servers()). In the master-slave

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

86 DAKOTA Class Documentation

case, the master maintains the correct number of jobs on each slave. In the static scheduling case, each
server is responsible for limiting concurrency (since the entire static schedule is sent to the peers at start
up).

8.8.2.17 void serve_evaluations_peer () [private]

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time as part
of the 1st peer

This code is invoked by serve_evaluations() to perform a synchronous evaluation in coordination with the
iteratorCommRank 0 processor (the iterator) for static schedules. The bcast() matches either the bcast()
in synchronous_local_evaluations(), which is invoked by static_schedule_evaluations()), or the bcast() in
map().

The documentation for this class was generated from the following files:

� ApplicationInterface.H
� ApplicationInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.9 Approximation Class Reference 87

8.9 Approximation Class Reference

Base class for the approximation class hierarchy.

Inheritance diagram for Approximation::

Approximation

ANNSurf HermiteSurf KrigingSurf MARSSurf RespSurf TaylorSurf

Public Member Functions

� Approximation ()

default constructor

� Approximation (const String &approx_type, const ProblemDescDB &problem_db, const size_-
t &num_acv)

standard constructor for envelope

� Approximation (const Approximation &approx)

copy constructor

� virtual � Approximation ()

destructor

� Approximation operator= (const Approximation &approx)

assignment operator

� virtual Real get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

� virtual const RealBaseVector & get_gradient (const RealVector &x)

retrieve the approximate function gradient for a given parameter vector

� virtual const RealMatrix & get_hessian (const RealVector &x)

retrieve the approximate function Hessian for a given parameter vector

� virtual int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� virtual const RealVector & approximation_coefficients ()

return the coefficient array computed by find_coefficients()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

88 DAKOTA Class Documentation

� void build (const RealVectorArray &vars_samples, const RealVector &fn_samples, const
RealBaseVectorArray &grad_samples)

build the global surface from scratch. Populates currentPoints and invokes find_coefficients().

� void build (const RealVector &vars_sample, const Real &fn_sample, const RealBaseVector &grad_-
sample, const RealMatrix &hess_sample)

build the local surface from scratch. Populates currentPoints and invokes find_coefficients().

� void add_point_rebuild (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad,
const RealMatrix &fn_hess)

add a new point to the approximation and rebuild it

� void set_bounds (const RealVector &lower, const RealVector &upper)

set approximation lower and upper bounds (currently only used by graphics)

� void draw_surface ()

render the approximate surface using the 3D graphics (2 variable problems only).

� int num_variables () const

return the number of variables used in the approximation

Protected Member Functions

� Approximation (BaseConstructor, const ProblemDescDB &problem_db, const size_t &num_acv)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

� virtual void find_coefficients ()

calculate the data fit coefficients using the currentPoints list of SurrogateDataPoints

Protected Attributes

� bool useGradsFlag

flag signaling the use of gradient data in global approximation builds as indicated by the user’s use_-
gradients specification. This setting cannot be inferred from the responses spec., since we may need
gradient support in the spec. for evaluating gradients at a single point (e.g., the center of a trust region),
but not require gradient evaluations at every point.

� bool verboseFlag

flag for verbose approximation output

� int numVars

number of variables in the approximation

� int numCurrentPoints

number of points in the currentPoints list

� int numSamples

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.9 Approximation Class Reference 89

number of samples passed to build() to construct the approximation

� RealBaseVector gradVector

gradient of the approximation with respect to the variables

� RealMatrix hessMatrix

Hessian of the approximation with respect to the variables.

� List � SurrogateDataPoint � currentPoints

list of samples used to build the approximation

� String approxType

approximation type (long form for diagnostic I/O)

Private Member Functions

� Approximation � get_approx (const String &approx_type, const ProblemDescDB &problem_db,
const size_t &num_acv)

Used only by the envelope constructor to initialize approxRep to the appropriate derived type.

� void add_point (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

add a new point to the approximation (used by build & add_point_rebuild)

Private Attributes

� RealVector approxLowerBounds

approximation lower bounds (used only by 3D graphics)

� RealVector approxUpperBounds

approximation upper bounds (used only by 3D graphics)

� Approximation � approxRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing approxRep

8.9.1 Detailed Description

Base class for the approximation class hierarchy.

The Approximation class is the base class for the data fit surrogate class hierarchy in DAKOTA. One
instance of a Approximation must be created for each function to be approximated (a vector of Approxi-
mations is contained in ApproximationInterface). For memory efficiency and enhanced polymorphism, the
approximation hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for
which the base class (Approximation) serves as the envelope and one of the derived classes (selected in
Approximation::get_approximation()) serves as the letter.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

90 DAKOTA Class Documentation

8.9.2 Constructor & Destructor Documentation

8.9.2.1 Approximation ()

default constructor

The default constructor is used in List � Approximation � instantiations. approxRep is NULL in this case
(problem_db is needed to build a meaningful Model object). This makes it necessary to check for NULL
in the copy constructor, assignment operator, and destructor.

8.9.2.2 Approximation (const String & approx_type, const ProblemDescDB & problem_db, const
size_t & num_acv)

standard constructor for envelope

Envelope constructor only needs to extract enough data to properly execute get_approx, since
Approximation(BaseConstructor, problem_db) builds the actual base class data for the derived approxi-
mations.

8.9.2.3 Approximation (const Approximation & approx)

copy constructor

Copy constructor manages sharing of approxRep and incrementing of referenceCount.

8.9.2.4 � Approximation () [virtual]

destructor

Destructor decrements referenceCount and only deletes approxRep when referenceCount reaches zero.

8.9.2.5 Approximation (BaseConstructor, const ProblemDescDB & problem_db, const size_t &
num_acv) [protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_approx() instan-
tiates a derived class letter and the derived constructor selects this base class constructor in its initialization
list (to avoid recursion in the base class constructor calling get_approx() again). Since the letter IS the rep-
resentation, its rep pointer is set to NULL (an uninitialized pointer causes problems in � Approximation).

8.9.3 Member Function Documentation

8.9.3.1 Approximation operator= (const Approximation & approx)

assignment operator

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.9 Approximation Class Reference 91

Assignment operator decrements referenceCount for old approxRep, assigns new approxRep, and incre-
ments referenceCount for new approxRep.

8.9.3.2 Approximation � get_approx (const String & approx_type, const ProblemDescDB &
problem_db, const size_t & num_acv) [private]

Used only by the envelope constructor to initialize approxRep to the appropriate derived type.

Used only by the envelope constructor to initialize approxRep to the appropriate derived type, as given by
the approx_type parameter.

The documentation for this class was generated from the following files:

� DakotaApproximation.H
� DakotaApproximation.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

92 DAKOTA Class Documentation

8.10 ApproximationInterface Class Reference

Derived class within the interface class hierarchy for supporting approximations to simulation-based re-
sults.

Inheritance diagram for ApproximationInterface::

ApproximationInterface

Interface

Public Member Functions

� ApproximationInterface (ProblemDescDB &problem_db, const size_t &num_acv, const size_-
t &num_fns)

constructor

� � ApproximationInterface ()

destructor

Protected Member Functions

� void map (const Variables &vars, const IntArray &asv, Response &response, const bool asynch_-
flag=false)

the function evaluator: provides an approximate "mapping" from the variables to the responses using
functionSurfaces

� int minimum_samples () const

returns minSamples

� void build_global_approximation (Iterator &dace_iterator, const RealVector &lower_bnds, const
RealVector &upper_bnds)

builds a global approximation for use as a surrogate

� void build_local_approximation (Model &actual_model)

builds a local approximation for use as a surrogate

� void update_approximation (const RealVector &x_star, const Response &response_star)

updates an existing global approximation with new data

� const RealVectorArray & approximation_coefficients ()

retrieve the approximation coefficients from each Approximation within an ApproximationInterface

� const ResponseArray & synch ()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.10 ApproximationInterface Class Reference 93

recovers data from a series of asynchronous evaluations (blocking)

� const ResponseList & synch_nowait ()

recovers data from a series of asynchronous evaluations (nonblocking)

Private Attributes

� String daceMethodPointer

string pointer to the dace iterator specified by the user in the global approximation specification

� String actualInterfacePointer

string pointer to the actual interface specified by the user in the local/multipoint approximation specifica-
tions

� Array � Approximation � functionSurfaces

list of approximations, one per response function

� RealVectorArray functionSurfaceCoeffs

array of approximation coefficient vectors, one vector per response function

� String sampleReuse

user selection of type of sample reuse for approximation builds: all, region, file, or none (default)

� String sampleReuseFile

file name for sampleReuse == "file"

� bool graphicsFlag

controls 3D graphics of approximation surfaces

� bool useGradsFlag

signals the use of gradient data in global approximation builds

� int minSamples

the minimum number of samples over all functionSurfaces

� ResponseList beforeSynchResponseList

bookkeeping list to catalogue responses generated in map for use in synch() and synch_nowait(). This
supports pseudo-asynchronous operations (approximate responses all always computed synchronously, but
asynchronous virtual functions are supported through bookkeeping).

8.10.1 Detailed Description

Derived class within the interface class hierarchy for supporting approximations to simulation-based re-
sults.

ApproximationInterface provides an interface class for building a set of global/local/multipoint approxi-
mations and performing approximate function evaluations using them. It contains a list of Approximation
objects, one for each response function.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

94 DAKOTA Class Documentation

8.10.2 Member Data Documentation

8.10.2.1 String daceMethodPointer [private]

string pointer to the dace iterator specified by the user in the global approximation specification

This pointer is not used for building objects since this is managed in SurrLayeredModels. Its
use in ApproximationInterface is currently limited to flagging dace contributions to data sets in
build_global_approximation().

8.10.2.2 String actualInterfacePointer [private]

string pointer to the actual interface specified by the user in the local/multipoint approximation specifica-
tions

This pointer is not used for building objects since this is managed in SurrLayeredModels. Its use in
ApproximationInterface is currently limited to header output.

8.10.2.3 Array � Approximation � functionSurfaces [private]

list of approximations, one per response function

This formulation allows the use of mixed approximations (i.e., different approximations used for different
response functions), although the input specification is not currently general enough to support it.

The documentation for this class was generated from the following files:

� ApproximationInterface.H
� ApproximationInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.11 Array Class Template Reference 95

8.11 Array Class Template Reference

Template class for the Dakota bookkeeping array.

Public Member Functions

� Array ()

Default constructor.

� Array (size_t size)

Constructor which takes an initial size.

� Array (size_t size, const T &initial_val)

Constructor which takes an initial size and an initial value.

� Array (const Array � T � &a)

Copy constructor.

� Array (const T � p, size_t size)

Constructor which copies size entries from T � .

� � Array ()

Destructor.

� Array � T � & operator= (const Array � T � &a)

Normal const assignment operator.

� Array � T � & operator= (Array � T � &a)

Normal assignment operator.

� Array � T � & operator= (const T &ival)

Sets all elements in self to the value ival.

� operator T � () const

Converts the Array to a standard C-style array. Use with care!

� T & operator[] (int i)

alternate bounds-checked indexing operator for int indices

� const T & operator[] (int i) const

alternate bounds-checked const indexing operator for int indices

� T & operator[] (size_t i)

Index operator, returns the ith value of the array.

� const T & operator[] (size_t i) const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

96 DAKOTA Class Documentation

Index operator const, returns the ith value of the array.

� T & operator() (size_t i)

Index operator, not bounds checked.

� const T & operator() (size_t i) const

Index operator const, not bounds checked.

� void print (ostream &s) const

Prints an Array to an output stream.

� void read (MPIUnpackBuffer &s)

Reads an Array from a buffer after an MPI receive.

� void print (MPIPackBuffer &s) const

Writes an Array to a buffer prior to an MPI send.

� size_t length () const

Returns size of array.

� void reshape (size_t sz)

Resizes array to size sz.

� size_t index (const T &a) const

Returns the index of the first array item which matches the object a.

� bool contains (const T &a) const

Checks if the array contains an object which matches the object a.

� size_t count (const T &a) const

Returns the number of items in the array matching the object a.

� const T � data () const

Returns pointer T � to continuous data.

8.11.1 Detailed Description

template � class T � class Dakota::Array � T �

Template class for the Dakota bookkeeping array.

An array class template that provides additional functionality that is specific to Dakota’s needs. The Array
class adds additional functionality needed by Dakota to the inherited base array class. The Array class can
inherite from either the STL or RW vector classes.

8.11.2 Constructor & Destructor Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.11 Array Class Template Reference 97

8.11.2.1 Array (const T � p, size_t size) [inline]

Constructor which copies size entries from T � .

Assigns size values from p into array.

8.11.3 Member Function Documentation

8.11.3.1 Array � T � & operator= (const T & ival) [inline]

Sets all elements in self to the value ival.

Assigns all values of array to the value passed in as ival. For the Rogue Wave case utilizes base class
operator=(ival),i while for the ANSI case uses the STL assign() method.

8.11.3.2 operator T � () const [inline]

Converts the Array to a standard C-style array. Use with care!

The operator() returns a c style pointer to the data within the array. Calls the data() method. USE WITH
CARE.

8.11.3.3]

T & operator[] (size_t i) [inline]

Index operator, returns the ith value of the array.

Index operator; calls the STL method at() which is bounds checked. Mimics the RW vector class. Note: the
at() method is not supported by the __GNUC__ STL implementation and by SGI builds omitting exceptions
(e.g., SIERRA).

8.11.3.4]

const T & operator[] (size_t i) const [inline]

Index operator const, returns the ith value of the array.

A const version of the index operator; calls the STL method at() which is bounds checked. Mimics the RW
vector class. Note: the at() method is not supported by the __GNUC__ STL implementation and by SGI
builds omitting exceptions (e.g., SIERRA).

8.11.3.5 T & operator() (size_t i) [inline]

Index operator, not bounds checked.

Non bounds check index operator, calls the STL operator[] which is not bounds checked. Needed to mimic
the RW vector class

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

98 DAKOTA Class Documentation

8.11.3.6 const T & operator() (size_t i) const [inline]

Index operator const, not bounds checked.

A const version of the non-bounds check index operator, calls the STL operator[] which is not bounds
checked. Needed to mimic the RW vector class

8.11.3.7 const T � data () const [inline]

Returns pointer T � to continuous data.

Returns a C style pointer to the data within the array. USE WITH CARE. Needed to mimic RW vector
class, is used in the operator(). Uses the STL front method.

The documentation for this class was generated from the following file:

� DakotaArray.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.12 BaseConstructor Struct Reference 99

8.12 BaseConstructor Struct Reference

Dummy struct for overloading letter-envelope constructors.

Public Member Functions

� BaseConstructor (int=0)

C++ structs can have constructors.

8.12.1 Detailed Description

Dummy struct for overloading letter-envelope constructors.

BaseConstructor is used to overload the constructor for the base class portion of letter objects. It avoids
infinite recursion (Coplien p.139) in the letter-envelope idiom by preventing the letter from instantiating
another envelope. Putting this struct here (rather than in a header of a class that uses it) avoids problems
with circular dependencies.

The documentation for this struct was generated from the following file:

� ProblemDescDB.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

100 DAKOTA Class Documentation

8.13 BaseVector Class Template Reference

Base class for the Dakota::Matrix and Dakota::Vector classes.

Inheritance diagram for BaseVector::

BaseVector

Vector

Public Member Functions

� BaseVector ()

Default constructor.

� BaseVector (size_t size)

Constructor, creates vector of size.

� BaseVector (size_t size, const T &initial_val)

Constructor, creates vector of size with initial value of initial_val.

� � BaseVector ()

Destructor.

� BaseVector (const BaseVector � T � &a)

Copy constructor.

� BaseVector � T � & operator= (const BaseVector � T � &a)

Normal assignment operator.

� BaseVector � T � & operator= (const T &ival)

Assigns all values of vector to ival.

� T & operator[] (int i)

alternate bounds-checked indexing operator for int indices

� const T & operator[] (int i) const

alternate bounds-checked const indexing operator for int indices

� T & operator[] (size_t i)

Returns the object at index i, (can use as lvalue).

� const T & operator[] (size_t i) const

Returns the object at index i, const (can’t use as lvalue).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.13 BaseVector Class Template Reference 101

� T & operator() (size_t i)

Index operator, not bounds checked.

� const T & operator() (size_t i) const

Index operator const , not bounds checked.

� size_t length () const

Returns size of vector.

� void reshape (size_t sz)

Resizes vector to size sz.

� const T � data () const

Returns const pointer to standard C array. Use with care.

Protected Member Functions

� T � array () const

Returns pointer to standard C array. Use with care.

8.13.1 Detailed Description

template � class T � class Dakota::BaseVector � T �

Base class for the Dakota::Matrix and Dakota::Vector classes.

The Dakota::BaseVector class is the base class for the Dakota::Matrix class. It is used to define a common
vector interface for both the STL and RW vector classes. If the STL version is based on the valarray class
then some basic vector operations such as + , � are available.

8.13.2 Constructor & Destructor Documentation

8.13.2.1 BaseVector (size_t size, const T & initial_val) [inline]

Constructor, creates vector of size with initial value of initial_val.

Constructor which takes an initial size and an initial value, allocates an area of initial size and initializes it
with input value. Calls base class constructor

8.13.3 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

102 DAKOTA Class Documentation

8.13.3.1]

T & operator[] (size_t i) [inline]

Returns the object at index i, (can use as lvalue).

Index operator, calls the STL method at() which is bounds checked. Mimics the RW vector class. Note: the
at() method is not supported by the __GNUC__ STL implementation and by SGI builds omitting exceptions
(e.g., SIERRA).

8.13.3.2]

const T & operator[] (size_t i) const [inline]

Returns the object at index i, const (can’t use as lvalue).

Const versions of the index operator calls the STL method at() which is bounds checked. Mimics the RW
vector class. Note: the at() method is not supported by the __GNUC__ STL implementation and by SGI
builds omitting exceptions (e.g., SIERRA).

8.13.3.3 T & operator() (size_t i) [inline]

Index operator, not bounds checked.

Non bounds check index operator, calls the STL operator[] which is not bounds checked. Needed to mimic
the RW vector class

8.13.3.4 const T & operator() (size_t i) const [inline]

Index operator const , not bounds checked.

Const version of the non-bounds check index operator, calls the STL operator[] which is not bounds
checked. Needed to mimic the RW vector class

8.13.3.5 size_t length () const [inline]

Returns size of vector.

Returns the length of the array by calling the STL size method. Needed to mimic the RW vector class

8.13.3.6 void reshape (size_t sz) [inline]

Resizes vector to size sz.

Resizes the array to size sz by calling the STL resize method. Needed to mimic the RW vector class

8.13.3.7 const T � data () const [inline]

Returns const pointer to standard C array. Use with care.

Returns a const pointer to the data within the array. USE WITH CARE. Needed to mimic RW vector class.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.13 BaseVector Class Template Reference 103

8.13.3.8 T � array () const [inline, protected]

Returns pointer to standard C array. Use with care.

Returns a non-const pointer to the data within the array. Non-const version of data() used by derived
classes.

The documentation for this class was generated from the following file:

� DakotaBaseVector.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

104 DAKOTA Class Documentation

8.14 BiStream Class Reference

The binary input stream class. Overloads the � � operator for all data types.

Public Member Functions

� BiStream ()

Default constructor, need to open.

� BiStream (const char � s)

Constructor takes name of input file.

� BiStream (const char � s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

� BiStream (const char � s, int mode)

Constructor takes name of input file, mode.

� � BiStream ()

Destructor, calls xdr_destroy to delete xdr stream.

� BiStream & operator � � (String &ds)

Binary Input stream operator
���

.

� BiStream & operator � � (char � s)

Input operator, reads char � from binary stream BiStream.

� BiStream & operator � � (char &c)

Input operator, reads char from binary stream BiStream.

� BiStream & operator � � (int &i)

Input operator, reads int � from binary stream BiStream.

� BiStream & operator � � (long &l)

Input operator, reads long from binary stream BiStream.

� BiStream & operator � � (short &s)

Input operator, reads short from binary stream BiStream.

� BiStream & operator � � (bool &b)

Input operator, reads bool from binary stream BiStream.

� BiStream & operator � � (double &d)

Input operator, reads double from binary stream BiStream.

� BiStream & operator � � (float &f)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.14 BiStream Class Reference 105

Input operator, reads float from binary stream BiStream.

� BiStream & operator � � (unsigned char &c)

Input operator, reads unsigned char � from binary stream BiStream.

� BiStream & operator � � (unsigned int &i)

Input operator, reads unsigned int from binary stream BiStream.

� BiStream & operator � � (unsigned long &l)

Input operator, reads unsigned long from binary stream BiStream.

� BiStream & operator � � (unsigned short &s)

Input operator, reads unsigned short from binary stream BiStream.

Private Attributes

� XDR xdrInBuf

XDR input stream buffer.

� char inBuf [MAX_NETOBJ_SZ]

Buffer to hold data as it is read in.

8.14.1 Detailed Description

The binary input stream class. Overloads the � � operator for all data types.

The Dakota::BiStream class is a binary input class which overloads the � � operator for all standard data
types (int, char, float, etc). The class relies on the methods within the ifstream base class. The Dakota::Bi-
Stream class inherits from the ifstream class. If available, the class utilize rpc/xdr to construct machine
independent binary files. These Dakota restart files can be moved from host to host. The motivation to
develop these classes was to replace the Rogue wave classes which Dakota historically used for binary I/O.

8.14.2 Constructor & Destructor Documentation

8.14.2.1 BiStream ()

Default constructor, need to open.

Default constructor, allocates xdr stream , but does not call the open method. The open method must be
called before stream can be read.

8.14.2.2 BiStream (const char � s)

Constructor takes name of input file.

Constructor which takes a char � filename. Calls the base class open method with the filename and no other
arguments. Also allocates the xdr stream.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

106 DAKOTA Class Documentation

8.14.2.3 BiStream (const char � s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

Constructor which takes a char � filename and int flags. Calls the base class open method with the filename
and flags as arguments. Also allocates xdr stream.

8.14.2.4 � BiStream ()

Destructor, calls xdr_destroy to delete xdr stream.

Destructor, destroys the xdr stream allocated in constructor

8.14.3 Member Function Documentation

8.14.3.1 BiStream & operator � � (String & ds)

Binary Input stream operator � � .

The String input operator must first read both the xdr buffer size and the size of the string written. Once
these our read it can then read and convert the String correctly.

8.14.3.2 BiStream & operator � � (char � s)

Input operator, reads char � from binary stream BiStream.

Reading char array is a special case. The method has no way of knowing if the length to the input array
is large enough, it assumes it is one char longer than actual string, (Null terminator added). As with the
String the size of the xdr buffer as well as the char array size written must be read from the stream prior to
reading and converting the char array.

The documentation for this class was generated from the following files:

� DakotaBinStream.H
� DakotaBinStream.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.15 BoStream Class Reference 107

8.15 BoStream Class Reference

The binary output stream class. Overloads the � � operator for all data types.

Public Member Functions

� BoStream ()

Default constructor, need to open.

� BoStream (const char � s)

Constructor takes name of input file.

� BoStream (const char � s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

� BoStream (const char � s, int mode)

Constructor takes name of input file, mode.

� � BoStream ()

Destructor, calls xdr_destroy to delete xdr stream.

� BoStream & operator � � (const String &ds)

Binary Output stream operator ��� .

� BoStream & operator � � (const char � s)

Output operator, writes char � TO binary stream BoStream.

� BoStream & operator � � (const char &c)

Output operator, writes char to binary stream BoStream.

� BoStream & operator � � (const int &i)

Output operator, writes int to binary stream BoStream.

� BoStream & operator � � (const long &l)

Output operator, writes long to binary stream BoStream.

� BoStream & operator � � (const short &s)

Output operator, writes short to binary stream BoStream.

� BoStream & operator � � (const bool &b)

Output operator, writes bool to binary stream BoStream.

� BoStream & operator � � (const double &d)

Output operator, writes double to binary stream BoStream.

� BoStream & operator � � (const float &f)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

108 DAKOTA Class Documentation

Output operator, writes float to binary stream BoStream.

� BoStream & operator � � (const unsigned char &c)

Output operator, writes unsigned char to binary stream BoStream.

� BoStream & operator � � (const unsigned int &i)

Output operator, writes unsigned int to binary stream BoStream.

� BoStream & operator � � (const unsigned long &l)

Output operator, writes unsigned long to binary stream BoStream.

� BoStream & operator � � (const unsigned short &s)

Output operator, writes unsigned short to binary stream BoStream.

Private Attributes

� XDR xdrOutBuf

XDR output stream buffer.

� char outBuf [MAX_NETOBJ_SZ]

Buffer to hold converted data before it is written.

8.15.1 Detailed Description

The binary output stream class. Overloads the � � operator for all data types.

The Dakota::BoStream class is a binary output classes which overloads the � � operator for all standard
data types (int, char, float, etc). The class relies on the built in write methods within the ostream base
classes. Dakota::BoStream inherits from the ofstream class. The motivation to develop this class was to
replace the Rogue wave class which Dakota historically used for binary I/O. If available, the class utilize
rpc/xdr to construct machine independent binary files. These Dakota restart files can be moved between
hosts.

8.15.2 Constructor & Destructor Documentation

8.15.2.1 BoStream ()

Default constructor, need to open.

Default constructor allocates the xdr stream but does not call the open() method. The open() method must
be called before stream can be written to.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.15 BoStream Class Reference 109

8.15.2.2 BoStream (const char � s)

Constructor takes name of input file.

Constructor, takes char � filename as argument. Calls base class open method with filename and no other
arguments. Also allocates xdr stream

8.15.2.3 BoStream (const char � s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

Constructor, takes char � filename and int flags as arguments. Calls base class open method with filename
and flags as arguments. Also allocates xdr stream. Note : If no rpc/xdr support xdr calls are #ifdef’d out.

8.15.3 Member Function Documentation

8.15.3.1 BoStream & operator � � (const String & ds)

Binary Output stream operator � � .

The String operator � � must first write the xdr buffer size and the original string size to the stream. The
input operator needs this information to be able to correctly read and convert the String.

8.15.3.2 BoStream & operator � � (const char � s)

Output operator, writes char � TO binary stream BoStream.

The output of char � is the same as the output of the String. The size of the xdr buffer and the size of the
string must be written first, then the string itself.

The documentation for this class was generated from the following files:

� DakotaBinStream.H
� DakotaBinStream.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

110 DAKOTA Class Documentation

8.16 BranchBndStrategy Class Reference

Strategy for mixed integer nonlinear programming using the PICO parallel branch and bound engine.

Inheritance diagram for BranchBndStrategy::

BranchBndStrategy

Strategy

Public Member Functions

� BranchBndStrategy (ProblemDescDB &problem_db)

constructor

� � BranchBndStrategy ()

destructor

� void run_strategy ()

Performs the branch and bound strategy by executing selectedIterator on userDefinedModel multiple times
in parallel for different variable bounds within the model.

� IteratorList & iterators (bool recurse_flag=true)

returns selectedIterator and any subordinate iterators

� ModelList & models (bool recurse_flag=true)

returns userDefinedModel and any subordinate models

Private Attributes

� Model userDefinedModel

the model used by the iterator

� Iterator selectedIterator

the iterator used by BranchBndStrategy

� int numRootSamples

number of samples to perform at the root of the branching structure

� int numNodeSamples

number of samples to perform at each node of the branching structure

� int picoCommRank

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.16 BranchBndStrategy Class Reference 111

processor rank in strategy-iterator intra comm

� int picoCommSize

number of processors in strategy-iterator intra comm

� int argC

dummy argument count passed to pico classes in init(), readAll(), and readAndBroadcast()

� char � � argV

dummy argument vector passed to pico classes in init(), readAll(), and readAndBroadcast()

� utilib::DoubleVector picoLowerBnds

global lower bounds for merged continuous & discrete design variables passed to PICO (copied from user-
DefinedModel)

� utilib::DoubleVector picoUpperBnds

global upper bounds for merged continuous & discrete design variables passed to PICO (copied from user-
DefinedModel)

� utilib::IntVector picoListOfIntegers

key to the discrete variables which have been relaxed and merged into the continuous variables and bounds
arrays (indices in the combined arrays)

8.16.1 Detailed Description

Strategy for mixed integer nonlinear programming using the PICO parallel branch and bound engine.

This strategy combines the PICO branching engine with nonlinear programming optimizers from DAKOTA
(e.g., DOT, NPSOL, OPT++) to solve mixed integer nonlinear programs. The discrete variables in the
problem must support relaxation, i.e., they must be able to assume nonintegral values during the solution
process. PICO selects solution "branches", each of which constrains the problem to lie within different
variable bounds. The series of branches selected is designed to drive integer variables to their integral
values. For each of the branches, a nonlinear DAKOTA optimizer is used to solve the optimization problem
and return the solution to PICO. If this solution has all of the integer variables at integral values, then it
provides an upper bound on the true solution. This bound can be used to prune other branches, since
there is no need to further investigate a branch which does not yet have integral values for the integer
variables and which has an objective function worse than the bound. In linear programs, the bounding
and pruning processes are rigorous and will lead to the exact global optimum. In nonlinear problems, the
bounding and pruning processes are heuristic, i.e. they will find local optima but the global optimum may
be missed. PICO supports parallelism between "hubs," each of which drives a concurrent iterator partition
in DAKOTA (and each of these iterator partitions may have lower levels of nested parallelism). This
complexity is hidden from PICO through the use of picoComm, which contains the set of master iterator
processors, one from each iterator partition. Thus, PICO can schedule jobs among single-processor hubs
in its normal manner, unaware of the nested parallelism complexities that may occur within each nonlinear
optimization.

The documentation for this class was generated from the following files:

� BranchBndStrategy.H
� BranchBndStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

112 DAKOTA Class Documentation

8.17 COLINApplication Class Template Reference

Public Member Functions

� COLINApplication (Model &model, COLINOptimizerBase � opt_)

constructor

� � COLINApplication ()

destructor

� void DoEval (DomainT &point, int &priority, ResponseT � response, bool synch_flag)

launch a function evaluation either synchronously or asynchronously

� unsigned int num_evaluation_servers ()

The number of ’slave’ processors that can perform evaluations. The value ’0’ indicates that this is a se-
quential application.

� void synchronize ()

blocking retrieval of all pending jobs

� int next_eval ()

nonblocking query and retrieval of a job if completed

� void dakota_asynch_flag (const bool &asynch_flag)

This function publishes the iterator’s asynchFlag at run time (asynchFlag not available at construction).

Private Types

� typedef colin::OptApplication � DomainT, ResponseT � base_t

a convenience typedef for shortening base class scoping

Private Member Functions

� void map_response (ResponseT &colin_response, const Response &dakota_response)

utility function for mapping a DAKOTA response to a COLIN response

Private Attributes

� Model & userDefinedModel

reference to the COLINOptimizer’s model passed in the constructor

� IntArray activeSetVector

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.17 COLINApplication Class Template Reference 113

copy/conversion of the COLIN request vector

� bool dakotaModelAsynchFlag

a flag for asynchronous DAKOTA evaluations

� ResponseList dakotaResponseList

list of DAKOTA responses returned by synchronize_nowait()

� IntList dakotaCompletionList

list of DAKOTA completions returned by synchronize_nowait_completions()

� size_t numObjFns

number of objective functions

� size_t numNonlinCons

number of nonlinear constraints

� COLINOptimizerBase � opt

pointer to the DAKOTA Optimizer hierarchy passed through the COLINApplication constructor. This is
needed for accessing Optimizer functions (e.g., multi_objective_modify()) needed by COLINApplication.

� int num_real_params

number of continuous design variables

� int num_integer_params

number of discrete design variables

� Variables � dakota_vars

a DAKOTA variables instance used for mapping COLIN variables data

� int synchronization_state

tracks the state of asynchronous evaluations

8.17.1 Detailed Description

template � class DomainT, class ResponseT � class Dakota::COLINApplication � DomainT,
ResponseT �

COLINApplication is a DAKOTA class that is derived from COLIN’s OptApplication hierarchy. It rede-
fines a variety of virtual COLIN functions to use the corresponding DAKOTA functions. This is a more
flexible algorithm library interfacing approach than can be obtained with the function pointer approaches
used by NPSOLOptimizer and SNLLOptimizer.

8.17.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

114 DAKOTA Class Documentation

8.17.2.1 void DoEval (DomainT & pt, int & priority, ResponseT � prob_response, bool synch_flag)

launch a function evaluation either synchronously or asynchronously

Converts the DomainT variables and request vector to DAKOTA variables and active set vector, performs a
DAKOTA function evaluation with synchronization governed by synch_flag, and then copies the Response
data to the ResponseT response (synchronous) or bookkeeps the response object (asynchronous).

8.17.2.2 void synchronize ()

blocking retrieval of all pending jobs

Blocking synchronize of asynchronous DAKOTA jobs followed by conversion of the Response objects to
ResponseT response objects.

8.17.2.3 int next_eval ()

nonblocking query and retrieval of a job if completed

Nonblocking job retrieval. Finds a completion (if available), populates the COLIN response, and sets id to
the completed job’s id. Else set id = -1.

8.17.2.4 void map_response (ResponseT & colin_response, const Response & dakota_response)
[private]

utility function for mapping a DAKOTA response to a COLIN response

map_response Maps a Response object into a ResponseT class that is compatable with COLIN.

The documentation for this class was generated from the following file:

� COLINApplication.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.18 COLINOptimizer Class Template Reference 115

8.18 COLINOptimizer Class Template Reference

Wrapper class for optimizers defined using COLIN.

Public Member Functions

� COLINOptimizer (Model &model)

————————————————————————– Section 2———————————————————
—————–

� � COLINOptimizer ()

destructor

� void find_optimum (void)

Performs the iterations to determine the optimal solution.

Protected Member Functions

� virtual void set_rng (void)

sets up the random number generator for stochastic methods

� virtual void set_initial_point (ColinPoint &pt)

sets the iteration starting point prior to minimization

� virtual void get_min_point (ColinPoint &pt)

retrieves the final solution after minimization

� virtual void set_method_parameters (void)

sets options for specific methods based on user specifications (called at construction time)

� void set_standard_method_parameters (void)

sets the standard method parameters shared by all methods

� virtual void set_runtime_parameters (void)

sets method parameters for specific methods using data that is not available until run time

Protected Attributes

� OptimizerT � optimizer

Pointer to COLIN base optimizer object.

� COLINApplication � ColinPoint, ColinResponse � � application

Pointer to the COLINApplication object.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

116 DAKOTA Class Documentation

� OptProblem � ColinPoint � problem

the COLIN problem object

� RNG � rng

RNG ptr.

� String evalSynch

the synchronization setting (blocking or nonblocking)

8.18.1 Detailed Description

template � class OptimizerT � class Dakota::COLINOptimizer � OptimizerT �

Wrapper class for optimizers defined using COLIN.

The COLINOptimizer class provides a templated wrapper for COLIN, a Sandia-developed C++ opti-
mization interface library. A variety of COLIN optimizers are defined in the COLINY optimization
library, which contains the optimization components from the old SGOPT library. COLINY contains
optimizers such as genetic algorithms, pattern search methods, and other nongradient-based techniques.
COLINOptimizer uses a COLINApplication object to perform the function evaluations.

The user input mappings are as follows: max_iterations, max_function_evaluations,
convergence_tolerance, solution_accuracy and max_cpu_time are mapped into
COLIN’s max_iters, max_neval, ftol, accuracy, and max_time data attributes. An output
setting of verbose is passed to COLIN’s set_output() function and a setting of debug activates output
of method initialization and sets the COLIN debug attribute to 10000. COLIN methods assume asyn-
chronous operations whenever the algorithm has independent evaluations which can be performed simul-
taneously (implicit parallelism). Therefore, parallel configuration is not mapped into the method, rather
it is used in COLINApplication to control whether or not an asynchronous evaluation request from the
method is honored by the model (exception: pattern search exploratory moves is set to best_all for
parallel function evaluations). Refer to [Hart, W.E., 1997] for additional information on COLIN objects
and controls.

8.18.2 Member Function Documentation

8.18.2.1 void find_optimum (void)

Performs the iterations to determine the optimal solution.

find_optimum redefines the Optimizer virtual function to perform the optimization using COLIN. It first
sets up the problem data, then executes minimize() on the COLIN optimizer, and finally catalogues the
results.

8.18.2.2 void set_standard_method_parameters (void) [protected]

sets the standard method parameters shared by all methods

set_standard_method_parameters propagates standard DAKOTA user input to the optimizer.

The documentation for this class was generated from the following file:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.18 COLINOptimizer Class Template Reference 117

� COLINOptimizer.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

118 DAKOTA Class Documentation

8.19 ColinPoint Class Reference

Public Attributes

� vector � double � rvec

continuous parameter values

� vector � int � ivec

discrete parameter values

8.19.1 Detailed Description

A class containing a vector of doubles and integers.

The documentation for this class was generated from the following file:

� COLINOptimizerBase.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.20 CommandLineHandler Class Reference 119

8.20 CommandLineHandler Class Reference

Utility class for managing command line inputs to DAKOTA.

Inheritance diagram for CommandLineHandler::

CommandLineHandler

GetLongOpt

Public Member Functions

� CommandLineHandler ()

default constructor, requires check_usage() call for parsing

� CommandLineHandler (int argc, char � � argv)

constructor with parsing

� � CommandLineHandler ()

destructor

� void check_usage (int argc, char � � argv)

Verifies that DAKOTA is called with the correct command usage. Prints a descriptive message and exits the
program if incorrect.

� int read_restart_evals () const

Returns the number of evaluations to be read from the restart file (as specified on the DAKOTA command
line) as an integer instead of a const char � .

Private Member Functions

� void initialize_options ()

enrolls the supported command line inputs.

8.20.1 Detailed Description

Utility class for managing command line inputs to DAKOTA.

CommandLineHandler provides additional functionality that is specific to DAKOTA’s needs for the defini-
tion and parsing of command line options. Inheritance is used to allow the class to have all the functionality
of the base class, GetLongOpt.

The documentation for this class was generated from the following files:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

120 DAKOTA Class Documentation

� CommandLineHandler.H
� CommandLineHandler.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.21 CommandShell Class Reference 121

8.21 CommandShell Class Reference

Utility class which defines convenience operators for spawning processes with system calls.

Public Member Functions

� CommandShell ()

constructor

� � CommandShell ()

destructor

� CommandShell & operator � � (const char � string)

adds string to unixCommand

� CommandShell & operator � � (CommandShell &(� f)(CommandShell &))

allows passing of the flush function to the shell using ���

� CommandShell & flush ()

"flushes" the shell; i.e. executes the unixCommand

� void asynch_flag (const bool flag)

set the asynchFlag

� bool asynch_flag () const

get the asynchFlag

� void suppress_output_flag (const bool flag)

set the suppressOutputFlag

� bool suppress_output_flag () const

get the suppressOutputFlag

Private Attributes

� String unixCommand

the command string that is constructed through one or more ��� insertions and then executed by flush

� bool asynchFlag

flags nonblocking operation (background system calls)

� bool suppressOutputFlag

flags suppression of shell output (no command echo)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

122 DAKOTA Class Documentation

8.21.1 Detailed Description

Utility class which defines convenience operators for spawning processes with system calls.

The CommandShell class wraps the C system() utility and defines convenience operators for building a
command string and then passing it to the shell.

8.21.2 Member Function Documentation

8.21.2.1 CommandShell & flush ()

"flushes" the shell; i.e. executes the unixCommand

Executes the unixCommand by passing it to system(). Appends an "&" if asynchFlag is set (background
system call) and echos the unixCommand to Cout if suppressOutputFlag is not set.

The documentation for this class was generated from the following files:

� CommandShell.H
� CommandShell.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.22 ConcurrentStrategy Class Reference 123

8.22 ConcurrentStrategy Class Reference

Strategy for multi-start iteration or pareto set optimization.

Inheritance diagram for ConcurrentStrategy::

ConcurrentStrategy

Strategy

Public Member Functions

� ConcurrentStrategy (ProblemDescDB &problem_db)

constructor

� � ConcurrentStrategy ()

destructor

� void run_strategy ()

Performs the concurrent strategy by executing selectedIterator on userDefinedModel multiple times in par-
allel for different settings within the iterator or model.

� IteratorList & iterators (bool recurse_flag=true)

returns selectedIterator and any subordinate iterators

� ModelList & models (bool recurse_flag=true)

returns userDefinedModel and any subordinate models

Private Member Functions

� void self_schedule_iterators ()

executed by the strategy master to self-schedule iterator jobs among slave iterator servers (called by
run_strategy())

� void serve_iterators ()

executed on the slave iterator servers to perform iterator jobs assigned by the strategy master (called by
run_strategy())

� void static_schedule_iterators ()

executed on iterator peers to statically schedule iterator jobs (called by run_strategy())

� void print_strategy_results ()

prints the concurrent iteration results summary (called by run_strategy())

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

124 DAKOTA Class Documentation

Private Attributes

� Model userDefinedModel

the model used by the iterator

� Iterator selectedIterator

the iterator used by the concurrent strategy

� int numIteratorServers

number of concurrent iterator partitions

� int numIteratorJobs

total number of iterator executions to schedule over the servers

� RealVectorArray parameterSets

an array of parameter set vectors (either multistart variable sets or pareto multiobjective weighting sets) to
be performed.

� PRPArray prpResults

an array of results corresponding to the parameter set vectors.

� bool multiStartFlag

distinguishes multi-start from Pareto-set

� bool strategyDedicatedMasterFlag

signals ded. master partitioning

� int iteratorServerId

identifier for an iterator server

� int drvMsgLen

length of an MPI buffer containing a RealVector from parameterSets

8.22.1 Detailed Description

Strategy for multi-start iteration or pareto set optimization.

This strategy maintains two concurrent iterator capabilities. First, a general capability for running an
iterator multiple times from different starting points is provided (often used for multi-start optimization,
but not restricted to optimization). Second, a simple capability for mapping the "pareto frontier" (the set
of optimal solutions in mutiobjective formulations) is provided. This pareto set is mapped through running
an optimizer multiple times for different sets of multiobjective weightings.

8.22.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.22 ConcurrentStrategy Class Reference 125

8.22.2.1 void self_schedule_iterators () [private]

executed by the strategy master to self-schedule iterator jobs among slave iterator servers (called by
run_strategy())

This function is adapted from ApplicationInterface::self_schedule_evaluations().

8.22.2.2 void serve_iterators () [private]

executed on the slave iterator servers to perform iterator jobs assigned by the strategy master (called by
run_strategy())

This function is similar in structure to ApplicationInterface::serve_evaluations_synch().

The documentation for this class was generated from the following files:

� ConcurrentStrategy.H
� ConcurrentStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

126 DAKOTA Class Documentation

8.23 CONMINOptimizer Class Reference

Wrapper class for the CONMIN optimization library.

Inheritance diagram for CONMINOptimizer::

CONMINOptimizer

Optimizer

Minimizer

Iterator

Public Member Functions

� CONMINOptimizer (Model &model)

constructor

� � CONMINOptimizer ()

destructor

� void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual
function for the optimizer branch.

Private Member Functions

� void allocate_workspace ()

Allocates workspace for the optimizer.

Private Attributes

� int conminInfo

INFO from CONMIN manual.

� int printControl

IPRINT from CONMIN manual (controls output verbosity).

� int optimizationType

MINMAX from DOT manual (minimize or maximize).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.23 CONMINOptimizer Class Reference 127

� RealVector localConstraintValues

array of nonlinear constraint values passed to CONMIN

� SizetList constraintMappingIndices

a list of indices for referencing the corresponding Response constraints used in computing the CONMIN
constraints.

� RealList constraintMappingMultipliers

a list of multipliers for mapping the Response constraints to the CONMIN constraints.

� RealList constraintMappingOffsets

a list of offsets for mapping the Response constraints to the CONMIN constraints.

� int N1

Size variable for CONMIN arrays. See CONMIN manual.

� int N2

Size variable for CONMIN arrays. See CONMIN manual.

� int N3

Size variable for CONMIN arrays. See CONMIN manual.

� int N4

Size variable for CONMIN arrays. See CONMIN manual.

� int N5

Size variable for CONMIN arrays. See CONMIN manual.

� int NFDG

Finite difference flag.

� int IPRINT

Flag to control amount of output data.

� int ITMAX

Flag to specify the maximum number of iterations.

� Real FDCH

Relative finite difference step size.

� Real FDCHM

Absolute finite difference step size.

� Real CT

Constraint thickness parameter.

� Real CTMIN

Minimum absolute value of CT used during optimization.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

128 DAKOTA Class Documentation

� Real CTL

Constraint thickness parameter for linear and side constraints.

� Real CTLMIN

Minimum value of CTL used during optimization.

� Real DELFUN

Relative convergence criterion threshold.

� Real DABFUN

Absolute convergence criterion threshold.

� Real � conminDesVars

Array of design variables used by CONMIN (length N1 = numdv+2).

� Real � conminLowerBnds

Array of lower bounds used by CONMIN (length N1 = numdv+2).

� Real � conminUpperBnds

Array of upper bounds used by CONMIN (length N1 = numdv+2).

� Real � S

Internal CONMIN array.

� Real � G1

Internal CONMIN array.

� Real � G2

Internal CONMIN array.

� Real � B

Internal CONMIN array.

� Real � C

Internal CONMIN array.

� int � MS1

Internal CONMIN array.

� Real � SCAL

Internal CONMIN array.

� Real � DF

Internal CONMIN array.

� Real � A

Internal CONMIN array.

� int � ISC

Internal CONMIN array.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.23 CONMINOptimizer Class Reference 129

� int � IC

Internal CONMIN array.

8.23.1 Detailed Description

Wrapper class for the CONMIN optimization library.

The CONMINOptimizer class provides a wrapper for CONMIN, a Public-domain Fortran 77 optimization
library written by Gary Vanderplaats under contract to NASA Ames Research Center. The CONMIN
User’s Manual is contained in NASA Technical Memorandum X-62282, 1978. CONMIN uses a reverse
communication mode, which avoids the static member function issues that arise with function pointer
designs (see NPSOLOptimizer and SNLLOptimizer).

The user input mappings are as follows: max_iterations is mapped into CONMIN’s ITMAX parame-
ter, max_function_evaluations is implemented directly in the find_optimum() loop since there is
no CONMIN parameter equivalent, convergence_tolerance is mapped into CONMIN’s DELFUN
and DABFUN parameters, output verbosity is mapped into CONMIN’s IPRINT parameter (verbose:
IPRINT = 4; quiet: IPRINT = 2), gradient mode is mapped into CONMIN’s NFDG parameter, and finite
difference step size is mapped into CONMIN’s FDCH and FDCHM parameters. Refer to [Vanderplaats,
1978] for additional information on CONMIN parameters.

8.23.2 Member Data Documentation

8.23.2.1 int conminInfo [private]

INFO from CONMIN manual.

Information requested by CONMIN: 1 = evaluate objective and constraints, 2 = evaluate gradients of ob-
jective and constraints.

8.23.2.2 int printControl [private]

IPRINT from CONMIN manual (controls output verbosity).

Values range from 0 (nothing) to 4 (most output). 0 = nothing, 1 = initial and final function information,
2 = all of #1 plus function value and design vars at each iteration, 3 = all of #2 plus constraint values and
direction vectors, 4 = all of #3 plus gradients of the objective function and constraints, 5 = all of #4 plus
proposed design vector, plus objective and constraint functions from the 1-D search

8.23.2.3 int optimizationType [private]

MINMAX from DOT manual (minimize or maximize).

Values of 0 or -1 (minimize) or 1 (maximize).

8.23.2.4 RealVector localConstraintValues [private]

array of nonlinear constraint values passed to CONMIN

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

130 DAKOTA Class Documentation

This array must be of nonzero length (sized with localConstraintArraySize) and must contain only one-
sided inequality constraints which are � = 0 (which requires a transformation from 2-sided inequalities and
equalities).

8.23.2.5 SizetList constraintMappingIndices [private]

a list of indices for referencing the corresponding Response constraints used in computing the CONMIN
constraints.

The length of the list corresponds to the number of CONMIN constraints, and each entry in the list points
to the corresponding DAKOTA constraint.

8.23.2.6 RealList constraintMappingMultipliers [private]

a list of multipliers for mapping the Response constraints to the CONMIN constraints.

The length of the list corresponds to the number of CONMIN constraints, and each entry in the list contains
a multiplier for the DAKOTA constraint identified with constraintMappingIndices. These multipliers are
currently +1 or -1.

8.23.2.7 RealList constraintMappingOffsets [private]

a list of offsets for mapping the Response constraints to the CONMIN constraints.

The length of the list corresponds to the number of CONMIN constraints, and each entry in the list contains
an offset for the DAKOTA constraint identified with constraintMappingIndices. These offsets involve
inequality bounds or equality targets, since CONMIN assumes constraint allowables = 0.

8.23.2.8 int N1 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N1 = number of variables + 2

8.23.2.9 int N2 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N2 = number of constraints + 2 � (number of variables)

8.23.2.10 int N3 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N3 = Maximum possible number of active constraints.

8.23.2.11 int N4 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N4 = Maximum(N3,number of variables)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.23 CONMINOptimizer Class Reference 131

8.23.2.12 int N5 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N5 = 2 � (N4)

8.23.2.13 Real CT [private]

Constraint thickness parameter.

The value of CT decreases in magnitude during optimization.

8.23.2.14 Real � S [private]

Internal CONMIN array.

Move direction in N-dimensional space.

8.23.2.15 Real � G1 [private]

Internal CONMIN array.

Temporary storage of constraint values.

8.23.2.16 Real � G2 [private]

Internal CONMIN array.

Temporary storage of constraint values.

8.23.2.17 Real � B [private]

Internal CONMIN array.

Temporary storage for computations involving array S.

8.23.2.18 Real � C [private]

Internal CONMIN array.

Temporary storage for use with arrays B and S.

8.23.2.19 int � MS1 [private]

Internal CONMIN array.

Temporary storage for use with arrays B and S.

8.23.2.20 Real � SCAL [private]

Internal CONMIN array.

Vector of scaling parameters for design parameter values.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

132 DAKOTA Class Documentation

8.23.2.21 Real � DF [private]

Internal CONMIN array.

Temporary storage for analytic gradient data.

8.23.2.22 Real � A [private]

Internal CONMIN array.

Temporary 2-D array for storage of constraint gradients.

8.23.2.23 int � ISC [private]

Internal CONMIN array.

Array of flags to identify linear constraints. (not used in this implementation of CONMIN)

8.23.2.24 int � IC [private]

Internal CONMIN array.

Array of flags to identify active and violated constraints

The documentation for this class was generated from the following files:

� CONMINOptimizer.H
� CONMINOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.24 CtelRegexp Class Reference 133

8.24 CtelRegexp Class Reference

Public Types

� enum RStatus {

GOOD = 0, EXP_TOO_BIG, OUT_OF_MEM, TOO_MANY_PAR,

UNMATCH_PAR, STARPLUS_EMPTY, STARPLUS_NESTED, INDEX_RANGE,

INDEX_MATCH, STARPLUS_NOTHING, TRAILING, INT_ERROR,

BAD_PARAM, BAD_OPCODE }

Error codes reported by the engine - Most of these codes never really occurs with this implementation.

Public Member Functions

� CtelRegexp (const std::string &pattern)

Constructor - compile a regular expression.

� � CtelRegexp ()

Destructor.

� bool compile (const std::string &pattern)

Compile a new regular expression.

� std::string match (const std::string &str)

matches a particular string; this method returns a string that is a sub-string matching with the regular
expression

� bool match (const std::string &str, size_t � start, size_t � size)

another form of matching; returns the indexes of the maching

� RStatus getStatus ()

Get status.

� const std::string & getStatusMsg ()

Get status message.

� void clearErrors ()

Clear all errors.

� const std::string & getRe ()

Return regular expression pattern.

� bool split (const std::string &str, std::vector � std::string � &all_matches)

Split.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

134 DAKOTA Class Documentation

Private Member Functions

� CtelRegexp (const CtelRegexp &)

Private copy constructor.

� CtelRegexp & operator= (const CtelRegexp &)

Private assignment operator.

Private Attributes

� std::string strPattern

STL string to hold pattern.

� regexp � r

Pointer to regexp.

� RStatus status

Return status, enumerated type.

� std::string statusMsg

STL string to hold status message.

8.24.1 Detailed Description

DESCRIPTION: Wrapper for the Regular Expression engine(regexp) released by Henry Spencer of the
University of Toronto.

The documentation for this class was generated from the following files:

� CtelRegExp.H
� CtelRegExp.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.25 DataInterface Class Reference 135

8.25 DataInterface Class Reference

Container class for interface specification data.

Public Member Functions

� DataInterface ()

constructor

� DataInterface (const DataInterface &)

copy constructor

� � DataInterface ()

destructor

� DataInterface & operator= (const DataInterface &)

assignment operator

� bool operator== (const DataInterface &)

equality operator

� void write (ostream &s) const

write a DataInterface object to an ostream

� void read (MPIUnpackBuffer &s)

read a DataInterface object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a DataInterface object to a packed MPI buffer

Public Attributes

� String interfaceType

the interface selection: application_system/fork/direct/grid or approximation_-
ann/rsm/mars/hermite/ksm/mpa/taylor/hierarchical

� String idInterface

string identifier for an interface specification data set (from the id_interface specification in InterfSetId)

� String inputFilter

the input filter for a simulation-based interface (from the input_filter specification in InterfApplic)

� String outputFilter

the output filter for a simulation-based interface (from the output_filter specification in InterfApplic)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

136 DAKOTA Class Documentation

� StringArray analysisDrivers

the set of analysis drivers for a simulation-based interface (from the analysis_drivers specification
in InterfApplic)

� String2DArray analysisComponents

the set of analysis components for a simulation-based interface (from the analysis_components spec-
ification in InterfApplic)

� String parametersFile

the parameters file for system call and fork interfaces (from the parameters_file specification in
InterfApplic)

� String resultsFile

the results file for system call and fork interfaces (from the results_file specification in InterfApplic)

� String analysisUsage

the analysis command usage string for a system call interface (from the analysis_usage specification
in InterfApplic)

� bool apreproFormatFlag

the flag for aprepro format usage in the parameters file for system call and fork interfaces (from the
aprepro specification in InterfApplic)

� bool fileTagFlag

the flag for file tagging of parameters and results files for system call and fork interfaces (from the file_-
tag specification in InterfApplic)

� bool fileSaveFlag

the flag for saving of parameters and results files for system call and fork interfaces (from the file_save
specification in InterfApplic)

� int procsPerAnalysis

processors per parallel analysis for a direct interface (from the processors_per_analysis specifi-
cation in InterfApplic)

� String modelCenterFile

configuration file for defining the simulation model accessed via the direct interface to the ModelCenter
framework from Phoenix Integration (from the modelcenter_file specification in InterfApplic)

� StringArray gridHostNames

names of host machines for a grid interface (from the hostnames specification in InterfApplic)

� IntArray gridProcsPerHost

processors per host machine for a grid interface (from the processors_per_host specification in
InterfApplic)

� String interfaceSynchronization

parallel mode for a simulation-based interface: synchronous or asynchronous (from the asynchronous
specification in InterfApplic)

� int asynchLocalEvalConcurrency

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.25 DataInterface Class Reference 137

evaluation concurrency for asynchronous simulation-based interfaces (from the evaluation_-
concurrency specification in InterfApplic)

� int asynchLocalAnalysisConcurrency

analysis concurrency for asynchronous simulation-based interfaces (from the analysis_concurrency
specification in InterfApplic)

� int evalServers

number of evaluation servers to be used in the parallel configuration (from the evaluation_servers
specification in InterfApplic)

� String evalScheduling

the scheduling approach to be used for concurrent evaluations within an iterator (from the
evaluation_self_scheduling and evaluation_static_scheduling specifications in InterfApplic)

� int analysisServers

number of analysis servers to be used in the parallel configuration (from the analysis_servers spec-
ification in InterfApplic)

� String analysisScheduling

the scheduling approach to be used for concurrent analyses within a function evaluation (from the
analysis_self_scheduling and analysis_static_scheduling specifications in Interf-
Applic)

� String failAction

the selected action upon capture of a simulation failure: abort, retry, recover, or continuation (from the
failure_capture specification in InterfApplic)

� int retryLimit

the limit on retries for captured simulation failures (from the retry specification in InterfApplic)

� RealVector recoveryFnVals

the function values to be returned in a recovery operation for captured simulation failures (from the
recover specification in InterfApplic)

� bool activeSetVectorFlag

active set vector: 1=active (ASV control on), 0=inactive (ASV control off) (from the deactivate
active_set_vector specification in InterfApplic)

� bool evalCacheFlag

function evaluation cache: 1=active (all new evaluations checked against existing cache and then added
to cache), 0=inactive (cache neither queried nor augmented) (from the deactivate evaluation_-
cache specification in InterfApplic)

� bool restartFileFlag

function evaluation cache: 1=active (all new evaluations written to restart), 0=inactive (no records written
to restart) (from the deactivate restart_file specification in InterfApplic)

� String approxType

the selected approximation type: global, multipoint, local, or hierarchical

� String actualInterfacePtr

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

138 DAKOTA Class Documentation

pointer to the interface specification for constructing the truth model used in building local and multipoint
approximations (from the actual_interface_pointer specification in InterfApprox)

� String actualInterfaceResponsesPtr

pointer to the responses specification for constructing the truth model used in building local approximations
(from the actual_interface_responses_pointer specification in InterfApprox). This allows dif-
ferences in gradient specifications between the responses used to build the approximation and the responses
computed from the approximation.

� String lowFidelityInterfacePtr

pointer to the low fidelity interface specification used in hierarchical approximations (from the low_-
fidelity_interface_pointer specification in InterfApprox)

� String highFidelityInterfacePtr

pointer to the high fidelity interface specification used in hierarchical approximations (from the high_-
fidelity_interface_pointer specification in InterfApprox)

� String approxDaceMethodPtr

pointer to the design of experiments method used in building global approximations (from the dace_-
method_pointer specification in InterfApprox)

� String approxSampleReuse

sample reuse selection for building global approximations: none, all, region, or file (from the reuse_-
samples specification in InterfApprox)

� String approxSampleReuseFile

the file name for the "file" setting for the reuse_samples specification in InterfApprox

� String approxCorrectionType

correction type for global and hierarchical approximations: additive or multiplicative (from the
correction specification in InterfApprox)

� short approxCorrectionOrder

correction order for global and hierarchical approximations: 0, 1, or 2 (from the correction specifica-
tion in InterfApprox)

� bool approxGradUsageFlag

flags the use of gradients in building global approximations (from the use_gradients specification in
InterfApprox)

� RealVector krigingCorrelations

vector of correlations used in building a kriging approximation (from the correlations specification in
InterfApprox)

� short polynomialOrder

scalar integer indicating the order of the polynomial approximation (1=linear, 2=quadratic, 3=cubic)

Private Member Functions

� void assign (const DataInterface &data_interface)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.25 DataInterface Class Reference 139

convenience function for setting this objects attributes equal to the attributes of the incoming data_interface
object (used by copy constructor and assignment operator)

8.25.1 Detailed Description

Container class for interface specification data.

The DataInterface class is used to contain the data from an interface keyword specification. It is populated
by ProblemDescDB::interface_kwhandler() and is queried by the ProblemDescDB::get_ � datatype � ()
functions. A list of DataInterface objects is maintained in ProblemDescDB::interfaceList, one for each
interface specification in an input file. Default values are managed in the DataInterface constructor. Data
is public to avoid maintaining set/get functions, but is still encapsulated within ProblemDescDB since
ProblemDescDB::interfaceList is private (a similar model is used with SurrogateDataPoint objects con-
tained in Dakota::Approximation).

The documentation for this class was generated from the following files:

� DataInterface.H
� DataInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

140 DAKOTA Class Documentation

8.26 DataMethod Class Reference

Container class for method specification data.

Public Member Functions

� DataMethod ()

constructor

� DataMethod (const DataMethod &)

copy constructor

� � DataMethod ()

destructor

� DataMethod & operator= (const DataMethod &)

assignment operator

� bool operator== (const DataMethod &)

equality operator

� void write (ostream &s) const

write a DataMethod object to an ostream

� void read (MPIUnpackBuffer &s)

read a DataMethod object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a DataMethod object to a packed MPI buffer

Public Attributes

� String methodName

the method selection: one of the dot, npsol, opt++, apps, sgopt, nond, dace, or parameter study methods

� String idMethod

string identifier for the method specification data set (from the id_method specification in MethodInd-
Control)

� String variablesPointer

string pointer to the variables specification to be used by this method (from the variables_pointer
specification in MethodIndControl)

� String interfacePointer

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.26 DataMethod Class Reference 141

string pointer to the interface specification to be used by this method (from the interface_pointer
specification in MethodIndControl)

� String responsesPointer

string pointer to the responses specification to be used by this method (from the responses_pointer
specification in MethodIndControl)

� String modelType

model type selection: single, nested, or layered (from the model_type specification in MethodIndControl)

� String subMethodPointer

string pointer to the sub-iterator used by nested models (from the sub_method_pointer specification
in MethodIndControl)

� String optionalInterfaceResponsesPointer

string pointer to the responses specification used by the optional interface in nested models (from the
interface_responses_pointer specification in MethodIndControl)

� StringArray primaryVarMaps

the primary variable mappings used in nested models for identifying the lower level variable targets for
inserting top level variable values (from the primary_variable_mapping specification in Method-
IndControl)

� StringArray secondaryVarMaps

the secondary variable mappings used in nested models for identifying the (distribution) parameter tar-
gets within the lower level variables for inserting top level variable values (from the secondary_-
variable_mapping specification in MethodIndControl)

� RealVector primaryRespCoeffs

the primary response mapping matrix used in nested models for weighting contributions from the sub-
iterator responses in the top level (objective) functions (from the primary_response_mapping spec-
ification in MethodIndControl)

� RealVector secondaryRespCoeffs

the secondary response mapping matrix used in nested models for weighting contributions from the sub-
iterator responses in the top level (constraint) functions (from the secondary_response_mapping
specification in MethodIndControl)

� String methodOutput

method verbosity control: quiet, verbose, debug, or normal (default) (from the output specification in
MethodIndControl)

� Real convergenceTolerance

iteration convergence tolerance for the method (from the convergence_tolerance specification in
MethodIndControl)

� Real constraintTolerance

tolerance for controlling the amount of infeasibility that is allowed before an active constraint is considered
to be violated (from the constraint_tolerance specification in MethodIndControl)

� int maxIterations

maximum number of iterations allowed for the method (from the max_iterations specification in
MethodIndControl)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

142 DAKOTA Class Documentation

� int maxFunctionEvaluations

maximum number of function evaluations allowed for the method (from the max_function_-
evaluations specification in MethodIndControl)

� bool speculativeFlag

flag for use of speculative gradient approaches for maintaining parallel load balance during the line search
portion of optimization algorithms (from the speculative specification in MethodIndControl)

� RealVector linearIneqConstraintCoeffs

coefficient matrix for the linear inequality constraints (from the linear_inequality_-
constraint_matrix specification in MethodIndControl)

� RealVector linearIneqLowerBnds

lower bounds for the linear inequality constraints (from the linear_inequality_lower_bounds
specification in MethodIndControl)

� RealVector linearIneqUpperBnds

upper bounds for the linear inequality constraints (from the linear_inequality_upper_bounds
specification in MethodIndControl)

� RealVector linearEqConstraintCoeffs

coefficient matrix for the linear equality constraints (from the linear_equality_constraint_-
matrix specification in MethodIndControl)

� RealVector linearEqTargets

targets for the linear equality constraints (from the linear_equality_targets specification in
MethodIndControl)

� String minMaxType

the optimization_type specification in MethodDOTDC

� int verifyLevel

the verify_level specification in MethodNPSOLDC

� Real functionPrecision

the function_precision specification in MethodNPSOLDC

� Real lineSearchTolerance

the linesearch_tolerance specification in MethodNPSOLDC

� Real absConvTol

absolute function convergence tolerance

� Real xConvTol

x-convergence tolerance

� Real singConvTol

singular convergence tolerance

� Real singRadius

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.26 DataMethod Class Reference 143

radius for singular convergence test

� Real falseConvTol

false-convergence tolerance

� Real initTRRadius

initial trust radius

� int covarianceType

kind of covariance required

� bool regressDiag

whether to print the regression diagnostic vector

� String searchMethod

the search_method specification for Newton and nonlinear interior-point methods in MethodOPTPPDC

� Real gradientTolerance

the gradient_tolerance specification in MethodOPTPPDC

� Real maxStep

the max_step specification in MethodOPTPPDC

� String meritFn

the merit_function specification for nonlinear interior-point methods in MethodOPTPPDC

� String centralPath

the central_path specification for nonlinear interior-point methods in MethodOPTPPDC

� Real stepLenToBoundary

the steplength_to_boundary specification for nonlinear interior-point methods in Method-
OPTPPDC

� Real centeringParam

the centering_parameter specification for nonlinear interior-point methods in MethodOPTPPDC

� int searchSchemeSize

the search_scheme_size specification for PDS methods in MethodOPTPPDC

� String evalSynchronization

the synchronization setting for parallel pattern search methods in MethodCOLINYPS and Method-
COLINYAPPS

� Real constraintPenalty

the initial constraint_penalty for COLINY methods in MethodCOLINYAPPS, MethodCOLINYDIR,
MethodCOLINYPS, and MethodCOLINYSW

� bool constantPenalty

the constant_penalty flag for COLINY methods in MethodCOLINYPS and MethodCOLINYSW

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

144 DAKOTA Class Documentation

� Real globalBalanceParam

the global_balance_parameter for the DIRECT method in MethodCOLINYDIR

� Real localBalanceParam

the local_balance_parameter for the DIRECT method in MethodCOLINYDIR

� Real maxBoxSize

the max_boxsize_limit for the DIRECT method in MethodCOLINYDIR

� Real minBoxSize

the min_boxsize_limit for the DIRECT method in MethodCOLINYDIR

� String boxDivision

the division setting (major_dimensionor all_dimensions) for the DIRECT method in Method-
COLINYDIR

� bool showMiscOptions

the show_misc_options specification in MethodCOLINYDC

� StringArray miscOptions

the misc_options specification in MethodCOLINYDC

� Real solnAccuracy

the solution_accuracy specification in MethodSGOPTDC

� Real crossoverRate

the crossover_rate specification for GA/EPSA methods in MethodSGOPTEA

� Real mutationDimRate

the dimension_rate specification for mutation in GA/EPSA methods in MethodSGOPTEA

� Real mutationPopRate

the population_rate specification for mutation in GA/EPSA methods in MethodSGOPTEA

� Real mutationScale

the mutation_scale specification for GA/EPSA methods in MethodSGOPTEA

� Real mutationMinScale

the min_scale specification for mutation in EPSA methods in MethodSGOPTEA

� Real initDelta

the initial_delta specification for APPS/PS/SW methods in MethodCOLINYAPPS, Method-
SGOPTPS, and MethodSGOPTSW

� Real threshDelta

the threshold_delta specification for APPS/PS/SW methods in MethodCOLINYAPPS, Method-
SGOPTPS, and MethodSGOPTSW

� Real contractFactor

the contraction_factor specification for APPS/PS/SW methods in MethodCOLINYAPPS, Method-
SGOPTPS, and MethodSGOPTSW

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.26 DataMethod Class Reference 145

� int newSolnsGenerated

the new_solutions_generated specification for GA/EPSA methods in MethodSGOPTEA

� int numberRetained

the integer assignment to random, chc, or elitist in the replacement_type specification for GA/EPSA
methods in MethodSGOPTEA

� bool expansionFlag

the no_expansion specification for APPS/PS/SW methods in MethodCOLINYAPPS, MethodSGOPTPS,
and MethodSGOPTSW

� int expandAfterSuccess

the expand_after_success specification for PS/SW methods in MethodSGOPTPS and Method-
SGOPTSW

� int contractAfterFail

the contract_after_failure specification for the SW method in MethodSGOPTSW

� int mutationRange

the mutation_range specification for the pga_int method in MethodSGOPTEA

� int numPartitions

the num_partitions specification for EPSA methods in MethodSGOPTEA

� int totalPatternSize

the total_pattern_size specification for APPS/PS methods in MethodCOLINYAPPS and Method-
SGOPTPS

� int batchSize

the batch_size specification for the sMC method in MethodSGOPTSMC

� bool nonAdaptiveFlag

the non_adaptive specification for the pga_real method in MethodSGOPTEA

� bool randomizeOrderFlag

the stochastic specification for the PS method in MethodSGOPTPS

� String selectionPressure

the selection_pressure specification for GA/EPSA methods in MethodSGOPTEA

� String replacementType

the replacement_type specification for GA/EPSA methods in MethodSGOPTEA

� String crossoverType

the crossover_type specification for GA/EPSA methods in MethodSGOPTEA

� String mutationType

the mutation_type specification for GA/EPSA methods in MethodSGOPTEA

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

146 DAKOTA Class Documentation

� String exploratoryMoves

the exploratory_moves specification for the PS method in MethodSGOPTPS

� String patternBasis

the pattern_basis specification for APPS/PS methods in MethodCOLINYAPPS and MethodSGOPTPS

� IntArray varPartitions

the partitions specification for sMC/PStudy methods in MethodSGOPTSMC and MethodPSMPS

� size_t numCrossPoints

The number of crossover points or multi-point schemes.

� size_t numParents

The number of parents to use in a crossover operation.

� size_t numOffspring

The number of children to produce in a crossover operation.

� String fitnessType

the fitness assessment operator to use.

� String convergenceType

The means by which this JEGA should converge.

� size_t dominationCutoff

The cutoff value for survival in domination count selection.

� Real shrinkagePercent

The minimum percentage of the requested number of selections that must take place on each call to the
selector (0, 1).

� Real percentChange

The minimum percent change before convergence for a fitness tracker converger.

� size_t numGenerations

The number of generations over which a fitness tracker converger should track.

� Real exteriorPenaltyMultiplier

The penalty multiplier to use with penalty fitness assessors.

� String initializationType

The means by which the JEGA should initialize the population.

� String flatFile

The filename to use for initialization.

� int populationSize

the population_size specification for GA methods in MethodSGOPTEA, MethodCOLINY, and

� String daceMethod

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.26 DataMethod Class Reference 147

the dace method selection: grid, random, oas, lhs, oa_lhs, box_behnken, or central_composite (from the
dace specification in MethodDDACE)

� int numSymbols

the symbols specification for DACE methods

� bool latinizeFlag

the latinize specification for FSU QMC and CVT methods in MethodFSUDACE

� bool volQualityFlag

the quality_metrics specification for sampling methods (FSU QMC and CVT methods in Method-
FSUDACE)

� bool varBasedDecompFlag

the var_based_decomp specification for sampling methods (FSU QMC and CVT methods in Method-
FSUDACE)

� IntVector sequenceStart

the sequenceStart specification in MethodFSUDACE

� IntVector sequenceLeap

the sequenceLeap specification in MethodFSUDACE

� IntVector primeBase

the primeBase specification in MethodFSUDACE

� int numTrials

the numTrials specification in MethodFSUDACE

� String trialType

the trial_type specification in MethodFSUDACE

� int randomSeed

the seed specification for SGOPT, NonD, & DACE methods

� int numSamples

the samples specification for NonD & DACE methods

� bool fixedSeedFlag

flag for fixing the value of the seed among different NonD/DACE sample sets. This results in the use of the
same sampling stencil/pattern throughout a strategy with repeated sampling.

� bool fixedSequenceFlag

flag for fixing the sequence for Halton or Hammersley QMC sample sets. This results in the use of the same
sampling stencil/pattern throughout a strategy with repeated sampling.

� int expansionTerms

the expansion_terms specification in MethodNonDPCE

� int expansionOrder

the expansion_order specification in MethodNonDPCE

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

148 DAKOTA Class Documentation

� String sampleType

the sample_type specification in MethodNonDMC and MethodNonDPCE

� String reliabilitySearchType

the type of MPP search as specified by x_linearize_mean, x_linearize_mpp, u_linearize_-
mean, u_linearize_mpp, or no_linearize in MethodNonDRel

� String reliabilitySearchAlgorithm

the algorithm selection used for computing the MPP as specified by sqp or nip in MethodNonDRel

� String reliabilityIntegration

the first_order/second_order integration selection in MethodNonDRel

� String distributionType

the distributioncumulative or complementary specification in MethodNonDMC, MethodNon-
DPCE, and MethodNonDRel

� String responseLevelMappingType

the compute probabilities or reliabilities specification in MethodNonDMC, MethodNon-
DPCE, and MethodNonDRel

� RealVectorArray responseLevels

the response_levels specification in MethodNonDMC, MethodNonDPCE, and MethodNonDRel

� RealVectorArray probabilityLevels

the probability_levels specification in MethodNonDMC, MethodNonDPCE, and MethodNonDRel

� RealVectorArray reliabilityLevels

the reliability_levels specification in MethodNonDMC, MethodNonDPCE, and MethodNonDRel

� bool allVarsFlag

the all_variables specification in MethodNonDMC

� int paramStudyType

the type of parameter study: list(-1), vector(1, 2, or 3), centered(4), or multidim(5)

� RealVector finalPoint

the final_point specification in MethodPSVPS

� RealVector stepVector

the step_vector specification in MethodPSVPS

� Real stepLength

the step_length specification in MethodPSVPS

� int numSteps

the num_steps specification in MethodPSVPS

� RealVector listOfPoints

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.26 DataMethod Class Reference 149

the list_of_points specification in MethodPSLPS

� Real percentDelta

the percent_delta specification in MethodPSCPS

� int deltasPerVariable

the deltas_per_variable specification in MethodPSCPS

Private Member Functions

� void assign (const DataMethod &data_method)

convenience function for setting this objects attributes equal to the attributes of the incoming data_method
object (used by copy constructor and assignment operator)

8.26.1 Detailed Description

Container class for method specification data.

The DataMethod class is used to contain the data from a method keyword specification. It is popu-
lated by ProblemDescDB::method_kwhandler() and is queried by the ProblemDescDB::get_ � datatype � ()
functions. A list of DataMethod objects is maintained in ProblemDescDB::methodList, one for each
method specification in an input file. Default values are managed in the DataMethod constructor. Data
is public to avoid maintaining set/get functions, but is still encapsulated within ProblemDescDB since
ProblemDescDB::methodList is private (a similar model is used with SurrogateDataPoint objects contained
in Dakota::Approximation).

The documentation for this class was generated from the following files:

� DataMethod.H
� DataMethod.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

150 DAKOTA Class Documentation

8.27 DataResponses Class Reference

Container class for responses specification data.

Public Member Functions

� DataResponses ()

constructor

� DataResponses (const DataResponses &)

copy constructor

� � DataResponses ()

destructor

� DataResponses & operator= (const DataResponses &)

assignment operator

� bool operator== (const DataResponses &)

equality operator

� void write (ostream &s) const

write a DataResponses object to an ostream

� void read (MPIUnpackBuffer &s)

read a DataResponses object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a DataResponses object to a packed MPI buffer

Public Attributes

� size_t numObjectiveFunctions

number of objective functions (from the num_objective_functions specification in RespFnOpt)

� size_t numNonlinearIneqConstraints

number of nonlinear inequality constraints (from the num_nonlinear_inequality_constraints
specification in RespFnOpt)

� size_t numNonlinearEqConstraints

number of nonlinear equality constraints (from the num_nonlinear_equality_constraints
specification in RespFnOpt)

� size_t numLeastSqTerms

number of least squares terms (from the num_least_squares_terms specification in RespFnLS)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.27 DataResponses Class Reference 151

� size_t numResponseFunctions

number of generic response functions (from the num_response_functions specification in RespFn-
Gen)

� RealVector multiObjectiveWeights

vector of multiobjective weightings (from the multi_objective_weights specification in RespFn-
Opt)

� RealVector nonlinearIneqLowerBnds

vector of nonlinear inequality constraint lower bounds (from the nonlinear_inequality_lower_-
bounds specification in RespFnOpt)

� RealVector nonlinearIneqUpperBnds

vector of nonlinear inequality constraint upper bounds (from the nonlinear_inequality_upper_-
bounds specification in RespFnOpt)

� RealVector nonlinearEqTargets

vector of nonlinear equality constraint targets (from the nonlinear_equality_targets specifica-
tion in RespFnOpt)

� String gradientType

gradient type: none, numerical, analytic, or mixed (from the no_gradients, numerical_-
gradients, analytic_gradients, and mixed_gradients specifications in RespGrad)

� String hessianType

Hessian type: none, numerical, quasi, analytic, or mixed (from the no_hessians, numerical_-
hessians, quasi_hessians, analytic_hessians, and mixed_hessians specifications in
RespHess).

� String quasiHessianType

quasi-Hessian type: bfgs, damped_bfgs, or sr1 (from the bfgs and sr1 specifications in RespHess)

� String methodSource

numerical gradient method source: dakota or vendor (from the method_source specification in Resp-
GradNum and RespGradMixed)

� String intervalType

numerical gradient interval type: forward or central (from the interval_type specification in Resp-
GradNum and RespGradMixed)

� RealVector fdGradStepSize

vector of finite difference step sizes for numerical gradients, one step size per active continuous variable,
used in computing 1st-order forward or central differences (from the fd_gradient_step_size speci-
fication in RespGradNum and RespGradMixed)

� RealVector fdHessStepSize

vector of finite difference step sizes for numerical Hessians, one step size per active continuous variable,
used in computing 1st-order gradient-based differences and 2nd-order function-based differences (from the
fd_hessian_step_size specification in RespHessNum and RespHessMixed)

� IntList idNumericalGrads

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

152 DAKOTA Class Documentation

mixed gradient numerical identifiers (from the id_numerical_gradients specification in RespGrad-
Mixed)

� IntList idAnalyticGrads

mixed gradient analytic identifiers (from the id_analytic_gradients specification in RespGrad-
Mixed)

� IntList idNumericalHessians

mixed Hessian numerical identifiers (from the id_numerical_hessians specification in RespHess-
Mixed)

� IntList idQuasiHessians

mixed Hessian quasi identifiers (from the id_quasi_hessians specification in RespHessMixed)

� IntList idAnalyticHessians

mixed Hessian analytic identifiers (from the id_analytic_hessians specification in RespHessMixed)

� String idResponses

string identifier for the responses specification data set (from the id_responses specification in Resp-
SetId)

� StringArray responseLabels

the response labels array (from the response_descriptors specification in RespLabels)

Private Member Functions

� void assign (const DataResponses &data_responses)

convenience function for setting this objects attributes equal to the attributes of the incoming data_responses
object (used by copy constructor and assignment operator)

8.27.1 Detailed Description

Container class for responses specification data.

The DataResponses class is used to contain the data from a responses keyword specification. It is populated
by ProblemDescDB::responses_kwhandler() and is queried by the ProblemDescDB::get_ � datatype � ()
functions. A list of DataResponses objects is maintained in ProblemDescDB::responsesList, one for each
responses specification in an input file. Default values are managed in the DataResponses constructor.
Data is public to avoid maintaining set/get functions, but is still encapsulated within ProblemDescDB since
ProblemDescDB::responsesList is private (a similar model is used with SurrogateDataPoint objects con-
tained in Dakota::Approximation).

The documentation for this class was generated from the following files:

� DataResponses.H
� DataResponses.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.28 DataStrategy Class Reference 153

8.28 DataStrategy Class Reference

Container class for strategy specification data.

Public Member Functions

� DataStrategy ()

constructor

� DataStrategy (const DataStrategy &)

copy constructor

� � DataStrategy ()

destructor

� DataStrategy & operator= (const DataStrategy &)

assignment operator

� void write (ostream &s) const

write a DataStrategy object to an ostream

� void read (MPIUnpackBuffer &s)

read a DataStrategy object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a DataStrategy object to a packed MPI buffer

Public Attributes

� String strategyType

the strategy selection: multi_level, surrogate_based_opt, opt_under_uncertainty, branch_and_bound,
multi_start, pareto_set, or single_method

� bool graphicsFlag

flags use of graphics by the strategy (from the graphics specification in StratIndControl)

� bool tabularDataFlag

flags tabular data collection by the strategy (from the tabular_graphics_data specification in StratInd-
Control)

� String tabularDataFile

the filename used for tabular data collection by the strategy (from the tabular_graphics_file specification in
StratIndControl)

� int iteratorServers

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

154 DAKOTA Class Documentation

number of servers for concurrent iterator parallelism (from the iterator_servers specification in StratInd-
Control)

� String iteratorScheduling

type of scheduling (self or static) used in concurrent iterator parallelism (from the iterator_self_scheduling
and iterator_static_scheduling specifications in StratIndControl)

� String methodPointer

method identifier for the strategy (from the opt_method_pointer specifications in StratSBO, StratOUU, Strat-
BandB, and StratParetoSet and method_pointer specifications in StratSingle and StratMultiStart)

� int branchBndNumSamplesRoot

number of samples at the root for the branch and bound strategy (from the num_samples_at_root specifica-
tion in StratBandB)

� int branchBndNumSamplesNode

number of samples at each node for the branch and bound strategy (from the num_samples_at_node speci-
fication in StratBandB)

� StringArray multilevelMethodList

array of methods for the multilevel hybrid optimization strategy (from the method_list specification in Strat-
ML)

� String multilevelType

the type of multilevel hybrid optimization strategy: uncoupled, uncoupled_adaptive, or coupled (from the
uncoupled, adaptive, and coupled specifications in StratML)

� Real multilevelProgThresh

progress threshold for uncoupled_adaptive multilevel hybrids (from the progress_threshold specification in
StratML)

� String multilevelGlobalMethodPointer

global method pointer for coupled multilevel hybrids (from the global_method_pointer specification in
StratML)

� String multilevelLocalMethodPointer

local method pointer for coupled multilevel hybrids (from the local_method_pointer specification in Strat-
ML)

� Real multilevelLSProb

local search probability for coupled multilevel hybrids (from the local_search_probability specification in
StratML)

� int surrBasedOptMaxIterations

maximum number of iterations in the surrogate-based optimization strategy (from the max_iterations spec-
ification in StratSBO)

� Real surrBasedOptConvTol

convergence tolerance in the surrogate-based optimization strategy (from the convergence_tolerance spec-
ification in StratSBO)

� int surrBasedOptSoftConvLimit

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.28 DataStrategy Class Reference 155

number of consecutive iterations with change less than surrBasedOptConvTol required to trigger conver-
gence within the surrogate-based optimization strategy (from the soft_convergence_limit specification in
StratSBO)

� bool surrBasedOptLayerBypass

flag to indicate user-specification of a bypass of any/all layerings in evaluating truth response values in
SBO.

� Real surrBasedOptTRInitSize

initial trust region size in the surrogate-based optimization strategy (from the initial_size specification in
StratSBO) note: this is a relative value, e.g., 0.1 = 10% of global bounds distance (upper bound - lower
bound) for each variable

� Real surrBasedOptTRMinSize

minimum trust region size in the surrogate-based optimization strategy (from the minimum_size specification
in StratSBO), if the trust region size falls below this threshold the SBO iterations are terminated (note: if
kriging is used with SBO, the min trust region size is set to 1.0e-3 in attempt to avoid ill-conditioned matrixes
that arise in kriging over small trust regions)

� Real surrBasedOptTRContractTrigger

trust region minimum improvement level (ratio of actual to predicted decrease in objective fcn) in the
surrogate-based optimization strategy (from the contract_region_threshold specification in StratSBO), the
trust region shrinks or is rejected if the ratio is below this value ("eta_1" in the Conn-Gould-Toint trust
region book)

� Real surrBasedOptTRExpandTrigger

trust region sufficient improvement level (ratio of actual to predicted decrease in objective fcn) in the
surrogate-based optimization strategy (from the expand_region_threshold specification in StratSBO), the
trust region expands if the ratio is above this value ("eta_2" in the Conn-Gould-Toint trust region book)

� Real surrBasedOptTRContract

trust region contraction factor in the surrogate-based optimization strategy (from the contraction_factor
specification in StratSBO)

� Real surrBasedOptTRExpand

trust region expansion factor in the surrogate-based optimization strategy (from the expansion_factor spec-
ification in StratSBO)

� int concurrentRandomJobs

number of random jobs to perform in the concurrent strategy (from the random_starts and random_weight_-
sets specifications in StratMultiStart and StratParetoSet)

� int concurrentSeed

seed for the selected random jobs within the concurrent strategy (from the seed specification in StratMulti-
Start and StratParetoSet)

� RealVector concurrentParameterSets

user-specified (i.e., nonrandom) parameter sets to evaluate in the concurrent strategy (from the starting_-
points and multi_objective_weight_sets specifications in StratMultiStart and StratParetoSet)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

156 DAKOTA Class Documentation

Private Member Functions

� void assign (const DataStrategy &data_strategy)

convenience function for setting this objects attributes equal to the attributes of the incoming data_strategy
object (used by copy constructor and assignment operator)

8.28.1 Detailed Description

Container class for strategy specification data.

The DataStrategy class is used to contain the data from a strategy keyword specification. It is populated by
ProblemDescDB::strategy_kwhandler() and is queried by the ProblemDescDB::get_ � datatype � () func-
tions. Default values are managed in the DataStrategy constructor. Data is public to avoid maintaining
set/get functions, but is still encapsulated within ProblemDescDB since ProblemDescDB::strategySpec is
private (a similar model is used with SurrogateDataPoint objects contained in Dakota::Approximation).

The documentation for this class was generated from the following files:

� DataStrategy.H
� DataStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.29 DataVariables Class Reference 157

8.29 DataVariables Class Reference

Container class for variables specification data.

Public Member Functions

� DataVariables ()

constructor

� DataVariables (const DataVariables &)

copy constructor

� � DataVariables ()

destructor

� DataVariables & operator= (const DataVariables &)

assignment operator

� bool operator== (const DataVariables &)

equality operator

� void write (ostream &s) const

write a DataVariables object to an ostream

� void read (MPIUnpackBuffer &s)

read a DataVariables object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a DataVariables object to a packed MPI buffer

� size_t design ()

return total number of design variables

� size_t uncertain ()

return total number of uncertain variables

� size_t state ()

return total number of state variables

� size_t num_continuous_variables ()

return total number of continuous variables

� size_t num_discrete_variables ()

return total number of discrete variables

� size_t num_variables ()

return total number of variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

158 DAKOTA Class Documentation

Public Attributes

� String idVariables

string identifier for the variables specification data set (from the id_variables specification in VarSetId)

� size_t numContinuousDesVars

number of continuous design variables (from the continuous_design specification in VarDV)

� size_t numDiscreteDesVars

number of discrete design variables (from the discrete_design specification in VarDV)

� size_t numNormalUncVars

number of normal uncertain variables (from the normal_uncertain specification in VarUV)

� size_t numLognormalUncVars

number of lognormal uncertain variables (from the lognormal_uncertain specification in VarUV)

� size_t numUniformUncVars

number of uniform uncertain variables (from the uniform_uncertain specification in VarUV)

� size_t numLoguniformUncVars

number of loguniform uncertain variables (from the loguniform_uncertain specification in VarUV)

� size_t numWeibullUncVars

number of weibull uncertain variables (from the weibull_uncertain specification in VarUV)

� size_t numHistogramUncVars

number of histogram uncertain variables (from the histogram_uncertain specification in VarUV)

� size_t numContinuousStateVars

number of continuous state variables (from the continuous_state specification in VarSV)

� size_t numDiscreteStateVars

number of discrete state variables (from the discrete_state specification in VarSV)

� RealVector continuousDesignVars

initial values for the continuous design variables array (from the cdv_initial_point specification in
VarDV)

� RealVector continuousDesignLowerBnds

the continuous design lower bounds array (from the cdv_lower_bounds specification in VarDV)

� RealVector continuousDesignUpperBnds

the continuous design upper bounds array (from the cdv_upper_bounds specification in VarDV)

� IntVector discreteDesignVars

initial values for the discrete design variables array (from the ddv_initial_point specification in
VarDV)

� IntVector discreteDesignLowerBnds

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.29 DataVariables Class Reference 159

the discrete design lower bounds array (from the ddv_lower_bounds specification in VarDV)

� IntVector discreteDesignUpperBnds

the discrete design upper bounds array (from the ddv_upper_bounds specification in VarDV)

� StringArray continuousDesignLabels

the continuous design labels array (from the cdv_descriptors specification in VarDV)

� StringArray discreteDesignLabels

the discrete design labels array (from the ddv_descriptors specification in VarDV)

� RealVector normalUncMeans

means of the normal uncertain variables (from the nuv_means specification in VarUV)

� RealVector normalUncStdDevs

standard deviations of the normal uncertain variables (from the nuv_std_deviations specification in
VarUV)

� RealVector normalUncDistLowerBnds

distribution lower bounds for the normal uncertain variables (from the nuv_dist_lower_bounds
specification in VarUV)

� RealVector normalUncDistUpperBnds

distribution upper bounds for the normal uncertain variables (from the nuv_dist_upper_bounds
specification in VarUV)

� RealVector lognormalUncMeans

means of the lognormal uncertain variables (from the lnuv_means specification in VarUV)

� RealVector lognormalUncStdDevs

standard deviations of the lognormal uncertain variables (from the lnuv_std_deviations specifica-
tion in VarUV)

� RealVector lognormalUncErrFacts

error factors for the lognormal uncertain variables (from the lnuv_error_factors specification in
VarUV)

� RealVector lognormalUncDistLowerBnds

distribution lower bounds for the lognormal uncertain variables (from the lnuv_dist_lower_bounds
specification in VarUV)

� RealVector lognormalUncDistUpperBnds

distribution upper bounds for the lognormal uncertain variables (from the lnuv_dist_upper_bounds
specification in VarUV)

� RealVector uniformUncDistLowerBnds

distribution lower bounds for the uniform uncertain variables (from the uuv_dist_lower_bounds
specification in VarUV)

� RealVector uniformUncDistUpperBnds

distribution upper bounds for the uniform uncertain variables (from the uuv_dist_upper_bounds
specification in VarUV)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

160 DAKOTA Class Documentation

� RealVector loguniformUncDistLowerBnds

distribution lower bounds for the loguniform uncertain variables (from the luuv_dist_lower_bounds
specification in VarUV)

� RealVector loguniformUncDistUpperBnds

distribution upper bounds for the loguniform uncertain variables (from the luuv_dist_upper_bounds
specification in VarUV)

� RealVector weibullUncAlphas

alpha factors for the weibull uncertain variables (from the wuv_alphas specification in VarUV)

� RealVector weibullUncBetas

beta factors for the weibull uncertain variables (from the wuv_betas specification in VarUV)

� RealVector weibullUncDistLowerBnds

distribution lower bounds for the weibull uncertain variables (from the wuv_dist_lower_bounds
specification in VarUV)

� RealVector weibullUncDistUpperBnds

distribution upper bounds for the weibull uncertain variables (from the wuv_dist_upper_bounds
specification in VarUV)

� RealVectorArray histogramUncBinPairs

an array containing a vector of (x,y) pairs for each bin-based histogram uncertain variable (see continuous
linear histogram in LHS manual; from the huv_num_bin_pairs and huv_bin_pairs specifications
in VarUV)

� RealVectorArray histogramUncPointPairs

an array containing a vector of (x,y) pairs for each point-based histogram uncertain variable (see discrete
histogram in LHS manual; from the huv_num_point_pairs and huv_point_pairs specifications
in VarUV)

� RealMatrix uncertainCorrelations

correlation matrix for all uncertain variables (from the uncertain_correlation_matrix specifi-
cation in VarUV). This matrix specifies rank correlations for sampling methods (i.e., LHS) and correlation
coefficients (rho_ij = normalized covariance matrix) for analytic reliability methods.

� RealVector uncertainVars

array of values for all uncertain variables (built and initialized in ProblemDescDB::variables_kwhandler())

� RealVector uncertainDistLowerBnds

distribution lower bounds for all uncertain variables (collected from nuv_dist_lower_-
bounds, lnuv_dist_lower_bounds, uuv_dist_lower_bounds, luuv_dist_lower_-
bounds, wuv_dist_lower_bounds, and huv_dist_lower_bounds specifications in VarUV)

� RealVector uncertainDistUpperBnds

distribution upper bounds for all uncertain variables (collected from nuv_dist_upper_-
bounds, lnuv_dist_upper_bounds, uuv_dist_upper_bounds, luuv_dist_upper_-
bounds, wuv_dist_upper_bounds, and huv_dist_upper_bounds specifications in VarUV)

� StringArray uncertainLabels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.29 DataVariables Class Reference 161

labels for all uncertain variables (collected from nuv_descriptors, lnuv_descriptors, uuv_-
descriptors, luuv_descriptors, wuv_descriptors, and huv_descriptors specifica-
tions in VarUV)

� RealVector continuousStateVars

initial values for the continuous state variables array (from the csv_initial_state specification in
VarSV)

� RealVector continuousStateLowerBnds

the continuous state lower bounds array (from the csv_lower_bounds specification in VarSV)

� RealVector continuousStateUpperBnds

the continuous state upper bounds array (from the csv_upper_bounds specification in VarSV)

� IntVector discreteStateVars

initial values for the discrete state variables array (from the dsv_initial_state specification in Var-
SV)

� IntVector discreteStateLowerBnds

the discrete state lower bounds array (from the dsv_lower_bounds specification in VarSV)

� IntVector discreteStateUpperBnds

the discrete state upper bounds array (from the dsv_upper_bounds specification in VarSV)

� StringArray continuousStateLabels

the continuous state labels array (from the csv_descriptors specification in VarSV)

� StringArray discreteStateLabels

the discrete state labels array (from the dsv_descriptors specification in VarSV)

Private Member Functions

� void assign (const DataVariables &data_variables)

convenience function for setting this objects attributes equal to the attributes of the incoming data_variables
object (used by copy constructor and assignment operator)

8.29.1 Detailed Description

Container class for variables specification data.

The DataVariables class is used to contain the data from a variables keyword specification. It is populated
by ProblemDescDB::variables_kwhandler() and is queried by the ProblemDescDB::get_ � datatype � ()
functions. A list of DataVariables objects is maintained in ProblemDescDB::variablesList, one for each
variables specification in an input file. Default values are managed in the DataVariables constructor. Data
is public to avoid maintaining set/get functions, but is still encapsulated within ProblemDescDB since
ProblemDescDB::variablesList is private (a similar model is used with SurrogateDataPoint objects con-
tained in Dakota::Approximation).

The documentation for this class was generated from the following files:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

162 DAKOTA Class Documentation

� DataVariables.H
� DataVariables.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.30 DDACEDesignCompExp Class Reference 163

8.30 DDACEDesignCompExp Class Reference

Wrapper class for the DDACE design of experiments library.

Inheritance diagram for DDACEDesignCompExp::

DDACEDesignCompExp

PStudyDACE

Analyzer

Iterator

Public Member Functions

� DDACEDesignCompExp (Model &model)

primary constructor for building a standard DACE iterator

� � DDACEDesignCompExp ()

destructor

� void extract_trends ()

Redefines the run_iterator virtual function for the PStudy/DACE branch.

� void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

reset sampling iterator

� const String & sampling_scheme () const

return sampling name

� void get_parameter_sets (bool vbd_change_seq_flag)

Returns one block of samples (ndim � num_samples).

Private Member Functions

� void resolve_samples_symbols ()

convenience function for resolving number of samples and number of symbols from input.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

164 DAKOTA Class Documentation

Private Attributes

� String daceMethod

oas, lhs, oa_lhs, random, box_behnken, central_composite, or grid

� int numSamples

number of samples to be evaluated

� int numSymbols

number of symbols to be used in generating the sample set (inversely related to number of replications)

� const int originalSeed

the user seed specification for the random number generator (allows repeatable results)

� int randomSeed

current seed for the random number generator

� bool allDataFlag

flag which triggers the update of allVars/allResponses for use by Iterator::all_variables() and
Iterator::all_responses()

� size_t numDACERuns

counter for number of executions of run_iterator() for this object

� bool varyPattern

flag for continuing the random number sequence from a previous run_iterator() execution (e.g., for
surrogate-based optimization) so that multiple executions are repeatable but not correlated.

� bool volQualityFlag

flag which specifies evaluating the volumetric quality measures

� bool varBasedDecompFlag

flag which specifies variance based decomposition

8.30.1 Detailed Description

Wrapper class for the DDACE design of experiments library.

The DDACEDesignCompExp class provides a wrapper for DDACE, a C++ design of experiments library
from the Computational Sciences and Mathematics Research (CSMR) department at Sandia’s Livermore
CA site. This class uses design and analysis of computer experiments (DACE) methods to sample the
design space spanned by the bounds of a Model. It returns all generated samples and their corresponding
responses as well as the best sample found.

8.30.2 Constructor & Destructor Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.30 DDACEDesignCompExp Class Reference 165

8.30.2.1 DDACEDesignCompExp (Model & model)

primary constructor for building a standard DACE iterator

This constructor is called for a standard iterator built with data from probDescDB.

8.30.3 Member Function Documentation

8.30.3.1 void resolve_samples_symbols () [private]

convenience function for resolving number of samples and number of symbols from input.

This function must define a combination of samples and symbols that is acceptable for a particular sampling
algorithm. Users provide requests for these quantities, but this function must enforce any restrictions
imposed by the sampling algorithms.

The documentation for this class was generated from the following files:

� DDACEDesignCompExp.H
� DDACEDesignCompExp.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

166 DAKOTA Class Documentation

8.31 DirectFnApplicInterface Class Reference

Derived application interface class which spawns simulation codes and testers using direct procedure calls.

Inheritance diagram for DirectFnApplicInterface::

DirectFnApplicInterface

ApplicationInterface

Interface

Public Member Functions

� DirectFnApplicInterface (const ProblemDescDB &problem_db, const size_t &num_fns)

constructor

� � DirectFnApplicInterface ()

destructor

� void derived_map (const Variables &vars, const IntArray &asv, Response &response, int fn_eval_-
id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of per-
forming an evaluation that is specific to a derived class.

� void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of per-
forming an asynchronous evaluation that is specific to a derived class.

� void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version waits for at least one
completion.

� void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version is nonblocking and
will return without any completions if none are immediately available.

� int derived_synchronous_local_analysis (const int &analysis_id)

Execute a particular analysis (identified by analysis_id) synchronously on the local processor. Used for the
derived class specifics within ApplicationInterface::serve_analyses_synch().

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.31 DirectFnApplicInterface Class Reference 167

Protected Member Functions

� virtual int derived_map_if (const String &if_name)

execute the input filter portion of a direct evaluation invocation

� virtual int derived_map_ac (const String &ac_name)

execute an analysis code portion of a direct evaluation invocation

� virtual int derived_map_of (const String &of_name)

execute the output filter portion of a direct evaluation invocation

� void set_local_data ()

convenience function for local test simulators which sets variable attributes and zeros response data

� void overlay_response (Response &response)

convenience function for local test simulators which overlays response contributions from multiple analyses
using MPI_Reduce

Protected Attributes

� String iFilterName

name of the direct function input filter

� String oFilterName

name of the direct function output filter

� String pxcFile

name of the ModelCenter simulation config file

� bool gradFlag

signals use of fnGrads in direct simulator functions

� bool hessFlag

signals use of fnHessians in direct simulator functions

� size_t numFns

number of functions in fnVals

� size_t numVars

total number of continuous and discrete variables

� size_t numGradVars

number of active continuous variables

� RealVector xC

continuous variable set used within direct simulator functions

� IntVector xD

discrete variable set used within direct simulator functions

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

168 DAKOTA Class Documentation

� RealVector fnVals

response function values set within direct simulator functions

� RealMatrix fnGrads

response function gradients set within direct simulator functions

� RealMatrixArray fnHessians

response function Hessians set within direct simulator functions

� Variables directFnVars

class scope variables object

� IntArray directFnASV

class scope active set vector object

� Response directFnResponse

class scope response object

Private Member Functions

� int cantilever (const Variables &vars, const IntArray &asv, Response &response)

the cantilever optimization under uncertainty test function

� int cyl_head (const Variables &vars, const IntArray &asv, Response &response)

the cylinder head constrained optimization test function

� int rosenbrock (const Variables &vars, const IntArray &asv, Response &response)

the rosenbrock optimization and least squares test function

� int text_book (const Variables &vars, const IntArray &asv, Response &response)

the text_book constrained optimization test function

� int text_book1 (const Variables &vars, const IntArray &asv, Response &response)

portion of text_book() evaluating the objective function and its derivatives

� int text_book2 (const Variables &vars, const IntArray &asv, Response &response)

portion of text_book() evaluating constraint 1 and its derivatives

� int text_book3 (const Variables &vars, const IntArray &asv, Response &response)

portion of text_book() evaluating constraint 2 and its derivatives

� int text_book_ouu (const Variables &vars, const IntArray &asv, Response &response)

the text_book_ouu optimization under uncertainty test function

� int log_ratio (const Variables &vars, const IntArray &asv, Response &response)

the log_ratio uncertainty quantification test function

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.31 DirectFnApplicInterface Class Reference 169

� int short_column (const Variables &vars, const IntArray &asv, Response &response)

the short_column uncertainty quantification/optimization under uncertainty test function

� int salinas (const Variables &vars, const IntArray &asv, Response &response)

direct interface to the SALINAS structural dynamics simulation code

� int mc_api_run (const Variables &vars, const IntArray &asv, Response &response)

Call ModelCenter via API, HKIM 4/3/03.

8.31.1 Detailed Description

Derived application interface class which spawns simulation codes and testers using direct procedure calls.

DerivedFnApplicInterface uses a few linkable simulation codes and several internal member functions to
perform parameter to response mappings.

The documentation for this class was generated from the following files:

� DirectFnApplicInterface.H
� DirectFnApplicInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

170 DAKOTA Class Documentation

8.32 DOTOptimizer Class Reference

Wrapper class for the DOT optimization library.

Inheritance diagram for DOTOptimizer::

DOTOptimizer

Optimizer

Minimizer

Iterator

Public Member Functions

� DOTOptimizer (Model &model)

constructor

� � DOTOptimizer ()

destructor

� void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual
function for the optimizer branch.

Private Member Functions

� void allocate_workspace ()

Allocates workspace for the optimizer.

Private Attributes

� int dotInfo

INFO from DOT manual.

� int dotFDSinfo

internal DOT parameter NGOTOZ

� int dotMethod

METHOD from DOT manual.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.32 DOTOptimizer Class Reference 171

� int printControl

IPRINT from DOT manual (controls output verbosity).

� int optimizationType

MINMAX from DOT manual (minimize or maximize).

� RealArray realCntlParmArray

RPRM from DOT manual.

� IntArray intCntlParmArray

IPRM from DOT manual.

� RealVector localConstraintValues

array of nonlinear constraint values passed to DOT

� int realWorkSpaceSize

size of realWorkSpace

� int intWorkSpaceSize

size of intWorkSpace

� RealArray realWorkSpace

real work space for DOT

� IntArray intWorkSpace

int work space for DOT

� SizetList constraintMappingIndices

a list of indices for referencing the corresponding Response constraints used in computing the DOT con-
straints.

� RealList constraintMappingMultipliers

a list of multipliers for mapping the Response constraints to the DOT constraints.

� RealList constraintMappingOffsets

a list of offsets for mapping the Response constraints to the DOT constraints.

8.32.1 Detailed Description

Wrapper class for the DOT optimization library.

The DOTOptimizer class provides a wrapper for DOT, a commercial Fortran 77 optimization library
from Vanderplaats Research and Development. It uses a reverse communication mode, which avoids
the static member function issues that arise with function pointer designs (see NPSOLOptimizer and
SNLLOptimizer).

The user input mappings are as follows: max_iterations is mapped into DOT’s ITMAX parameter
within its IPRM array, max_function_evaluations is implemented directly in the find_optimum()
loop since there is no DOT parameter equivalent, convergence_tolerance is mapped into DOT’s

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

172 DAKOTA Class Documentation

DELOBJ parameter (the relative convergence tolerance) within its RPRM array, output verbosity is
mapped into DOT’s IPRINT parameter within its function call parameter list (verbose: IPRINT = 7;
quiet: IPRINT = 3), and optimization_type is mapped into DOT’s MINMAX parameter within its
function call parameter list. Refer to [Vanderplaats Research and Development, 1995] for information on
IPRM, RPRM, and the DOT function call parameter list.

8.32.2 Member Data Documentation

8.32.2.1 int dotInfo [private]

INFO from DOT manual.

Information requested by DOT: 0=optimization complete, 1=get values, 2=get gradients

8.32.2.2 int dotFDSinfo [private]

internal DOT parameter NGOTOZ

the DOT parameter list has been modified to pass NGOTOZ, which signals whether DOT is finite-
differencing (nonzero value) or performing the line search (zero value).

8.32.2.3 int dotMethod [private]

METHOD from DOT manual.

For nonlinear constraints: 0/1 = dot_mmfd, 2 = dot_slp, 3 = dot_sqp. For unconstrained: 0/1 = dot_bfgs, 2
= dot_frcg.

8.32.2.4 int printControl [private]

IPRINT from DOT manual (controls output verbosity).

Values range from 0 (least output) to 7 (most output).

8.32.2.5 int optimizationType [private]

MINMAX from DOT manual (minimize or maximize).

Values of 0 or -1 (minimize) or 1 (maximize).

8.32.2.6 RealArray realCntlParmArray [private]

RPRM from DOT manual.

Array of real control parameters.

8.32.2.7 IntArray intCntlParmArray [private]

IPRM from DOT manual.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.32 DOTOptimizer Class Reference 173

Array of integer control parameters.

8.32.2.8 RealVector localConstraintValues [private]

array of nonlinear constraint values passed to DOT

This array must be of nonzero length (sized with localConstraintArraySize) and must contain only one-
sided inequality constraints which are � = 0 (which requires a transformation from 2-sided inequalities and
equalities).

8.32.2.9 SizetList constraintMappingIndices [private]

a list of indices for referencing the corresponding Response constraints used in computing the DOT con-
straints.

The length of the list corresponds to the number of DOT constraints, and each entry in the list points to the
corresponding DAKOTA constraint.

8.32.2.10 RealList constraintMappingMultipliers [private]

a list of multipliers for mapping the Response constraints to the DOT constraints.

The length of the list corresponds to the number of DOT constraints, and each entry in the list contains
a multiplier for the DAKOTA constraint identified with constraintMappingIndices. These multipliers are
currently +1 or -1.

8.32.2.11 RealList constraintMappingOffsets [private]

a list of offsets for mapping the Response constraints to the DOT constraints.

The length of the list corresponds to the number of DOT constraints, and each entry in the list contains
an offset for the DAKOTA constraint identified with constraintMappingIndices. These offsets involve
inequality bounds or equality targets, since DOT assumes constraint allowables = 0.

The documentation for this class was generated from the following files:

� DOTOptimizer.H
� DOTOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

174 DAKOTA Class Documentation

8.33 ErrorTable Struct Reference

Data structure to hold errors.

Public Attributes

� CtelRegexp::RStatus rc

Enumerated type to hold status codes.

� const char � msg

Holds character string error message.

8.33.1 Detailed Description

Data structure to hold errors.

This module implements a C++ wrapper for Regular Expressions based on the public domain engine for
regular expressions released by: Copyright (c) 1986 by University of Toronto. Written by Henry Spencer.
Not derived from licensed software.

The documentation for this struct was generated from the following file:

� CtelRegExp.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.34 ForkAnalysisCode Class Reference 175

8.34 ForkAnalysisCode Class Reference

Derived class in the AnalysisCode class hierarchy which spawns simulations using forks.

Inheritance diagram for ForkAnalysisCode::

ForkAnalysisCode

AnalysisCode

Public Member Functions

� ForkAnalysisCode (const ProblemDescDB &problem_db)

constructor

� � ForkAnalysisCode ()

destructor

� pid_t fork_program (const bool block_flag)

spawn a child process using fork()/vfork()/execvp() and wait for completion using waitpid() if block_flag is
true

� void check_status (const int status)

check the exit status of a forked process and abort if an error code was returned

� void argument_list (const int index, const String &arg)

set argList[index] to arg

� void tag_argument_list (const int index, const int tag)

append an additional tag to argList[index] (beyond that already present in the modified file names) for
managing concurrent analyses within a function evaluation

Private Attributes

� const char � argList [4]

an array of strings for use with execvp(const char � , char � const �) (an argList entry can be passed as the
first argument, and the entire argList can be cast as the second argument)

8.34.1 Detailed Description

Derived class in the AnalysisCode class hierarchy which spawns simulations using forks.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

176 DAKOTA Class Documentation

ForkAnalysisCode creates a copy of the parent DAKOTA process using fork()/vfork() and then replaces
the copy with a simulation process using execvp(). The parent process can then use waitpid() to wait on
completion of the simulation process.

8.34.2 Member Function Documentation

8.34.2.1 void check_status (const int status)

check the exit status of a forked process and abort if an error code was returned

Check to see if the 3-piece interface terminated abnormally (WIFEXITED(status)==0) or if ei-
ther execvp or the application returned a status code of -1 (WIFEXITED(status)!=0 && (signed
char)WEXITSTATUS(status)==-1). If one of these conditions is detected, output a failure message and
abort. Note: the application code should not return a status code of -1 unless an immediate abort of dakota
is wanted. If for instance, failure capturing is to be used, the application code should write the word "FAIL"
to the appropriate results file and return a status code of 0 through exit().

The documentation for this class was generated from the following files:

� ForkAnalysisCode.H
� ForkAnalysisCode.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.35 ForkApplicInterface Class Reference 177

8.35 ForkApplicInterface Class Reference

Derived application interface class which spawns simulation codes using forks.

Inheritance diagram for ForkApplicInterface::

ForkApplicInterface

ApplicationInterface

Interface

Public Member Functions

� ForkApplicInterface (const ProblemDescDB &problem_db, const size_t &num_fns)

constructor

� � ForkApplicInterface ()

destructor

� void derived_map (const Variables &vars, const IntArray &asv, Response &response, int fn_eval_-
id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of per-
forming an evaluation that is specific to a derived class.

� void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of per-
forming an asynchronous evaluation that is specific to a derived class.

� void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version waits for at least one
completion.

� void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version is nonblocking and
will return without any completions if none are immediately available.

� int derived_synchronous_local_analysis (const int &analysis_id)

Execute a particular analysis (identified by analysis_id) synchronously on the local processor. Used for the
derived class specifics within ApplicationInterface::serve_analyses_synch().

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

178 DAKOTA Class Documentation

Private Member Functions

� void derived_synch_kernel (PRPList &prp_list, const pid_t pid)

Convenience function for common code between derived_synch() & derived_synch_nowait().

� pid_t fork_application (const bool block_flag)

perform the complete function evaluation by managing the input filter, analysis programs, and output filter

� void asynchronous_local_analyses (const int &start, const int &end, const int &step)

execute analyses asynchronously on the local processor

� void synchronous_local_analyses (const int &start, const int &end, const int &step)

execute analyses synchronously on the local processor

� void serve_analyses_asynch ()

serve the analysis scheduler and execute analysis assignments asynchronously

Private Attributes

� ForkAnalysisCode forkSimulator

ForkAnalysisCode provides convenience functions for forking individual programs and checking fork exit
status.

� List � pid_t � processIdList

list of process id’s for asynchronous evaluations; correspondence to evalIdList used for mapping captured
fork process id’s to function evaluation id’s

� IntList evalIdList

list of function evaluation id’s for asynchronous evaluations; correspondence to processIdList used for
mapping captured fork process id’s to function evaluation id’s

8.35.1 Detailed Description

Derived application interface class which spawns simulation codes using forks.

ForkApplicInterface uses a ForkAnalysisCode object for performing simulation invocations.

8.35.2 Member Function Documentation

8.35.2.1 pid_t fork_application (const bool block_flag) [private]

perform the complete function evaluation by managing the input filter, analysis programs, and output filter

Manage the input filter, 1 or more analysis programs, and the output filter in blocking or nonblocking
mode as governed by block_flag. In the case of a single analysis and no filters, a single fork is per-
formed, while in other cases, an initial fork is reforked multiple times. Called from derived_map() with

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.35 ForkApplicInterface Class Reference 179

block_flag == BLOCK and from derived_map_asynch() with block_flag == FALL_THROUGH. Uses
ForkAnalysisCode::fork_program() to spawn individual program components within the function evalu-
ation.

8.35.2.2 void asynchronous_local_analyses (const int & start, const int & end, const int & step)
[private]

execute analyses asynchronously on the local processor

Schedule analyses asynchronously on the local processor using a self-scheduling approach (start to
end in step increments). Concurrency is limited by asynchLocalAnalysisConcurrency. Modeled af-
ter ApplicationInterface::asynchronous_local_evaluations(). NOTE: This function should be elevated to
ApplicationInterface if and when another derived interface class supports asynchronous local analyses.

8.35.2.3 void synchronous_local_analyses (const int & start, const int & end, const int & step)
[private]

execute analyses synchronously on the local processor

Execute analyses synchronously in succession on the local processor (start to end in step increments).
Modeled after ApplicationInterface::synchronous_local_evaluations().

8.35.2.4 void serve_analyses_asynch () [private]

serve the analysis scheduler and execute analysis assignments asynchronously

This code runs multiple asynch analyses on each server. It is modeled after
ApplicationInterface::serve_evaluations_asynch(). NOTE: This fn should be elevated to
ApplicationInterface if and when another derived interface class supports hybrid analysis parallelism.

The documentation for this class was generated from the following files:

� ForkApplicInterface.H
� ForkApplicInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

180 DAKOTA Class Documentation

8.36 FSUDesignCompExp Class Reference

Wrapper class for the FSUDace QMC/CVT library.

Inheritance diagram for FSUDesignCompExp::

FSUDesignCompExp

PStudyDACE

Analyzer

Iterator

Public Member Functions

� FSUDesignCompExp (Model &model)

primary constructor for building a standard DACE iterator

� � FSUDesignCompExp ()

destructor

� void extract_trends ()

Redefines the run_iterator virtual function for the PStudy/DACE branch.

� void get_parameter_sets (bool vbd_change_seq_flag)

Returns one block of samples (ndim � num_samples).

� void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

reset sampling iterator

� const String & sampling_scheme () const

return sampling name

Private Member Functions

� void enforce_input_rules ()

enforce sanity checks/modifications for the user input specification

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.36 FSUDesignCompExp Class Reference 181

Private Attributes

� int numSamples

number of samples to be evaluated

� bool allDataFlag

flag which triggers the update of allVars/allResponses for use by Iterator::all_variables() and
Iterator::all_responses()

� size_t numDACERuns

counter for number of executions of run_iterator() for this object

� bool latinizeFlag

flag which specifies latinization of QMC or CVT sample sets

� bool volQualityFlag

flag which specifies evaluating the volumetric quality measures

� bool varBasedDecompFlag

flag which specifies calculating variance based decomposition sensitivity analysis metrics

� IntVector sequenceStart

Integer vector defining a starting index into the sequence for random variable sampled. Default is 0 0 0
(e.g. for three random variables).

� IntVector sequenceLeap

Integer vector defining the leap number for each sequence being generated. Default is 1 1 1 (e.g. for three
random vars.).

� IntVector primeBase

Integer vector defining the prime base for each sequence being generated. Default is 2 3 5 (e.g., for three
random vars.).

� int originalSeed

the user seed specification for the random number generator (allows repeatable results)

� int randomSeed

current seed for the random number generator

� bool varyPattern

flag for continuing the random number or QMC sequence from a previous run_iterator() execution (e.g., for
surrogate-based optimization) so that multiple executions are repeatable but not identical.

� int numCVTTrials

specifies the number of sample points taken at internal CVT iteration

� int trialType

Trial type in CVT. Specifies where the points are placed for consideration relative to the centroids. Choices
are grid (2), halton (1), uniform (0), or random (-1). Default is random.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

182 DAKOTA Class Documentation

8.36.1 Detailed Description

Wrapper class for the FSUDace QMC/CVT library.

The FSUDesignCompExp class provides a wrapper for FSUDace, a C++ design of experiments library
from Florida State University. This class uses quasi Monte Carlo (QMC) and Centroidal Voronoi Tessela-
tion (CVT) methods to uniformly sample the parameter space spanned by the active bounds of the current
Model. It returns all generated samples and their corresponding responses as well as the best sample found.

8.36.2 Constructor & Destructor Documentation

8.36.2.1 FSUDesignCompExp (Model & model)

primary constructor for building a standard DACE iterator

This constructor is called for a standard iterator built with data from probDescDB.

8.36.3 Member Function Documentation

8.36.3.1 void enforce_input_rules () [private]

enforce sanity checks/modifications for the user input specification

Users may input a variety of quantities, but this function must enforce any restrictions imposed by the
sampling algorithms.

The documentation for this class was generated from the following files:

� FSUDesignCompExp.H
� FSUDesignCompExp.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.37 FunctionCompare Class Template Reference 183

8.37 FunctionCompare Class Template Reference

Public Member Functions

� FunctionCompare (bool(� func)(const T &, void �), void � v)

Constructor that defines the pointer to function and search value.

� bool operator() (T t) const

The operator() must be defined. Calls the function testFunction.

Private Attributes

� bool(� testFunction)(const T &, void �)

Pointer to test function.

� void � search_val

Holds the value to search for.

8.37.1 Detailed Description

template � class T � class Dakota::FunctionCompare � T �

Internal functor to mimic the RW find and index functions using the STL find_if() method. The class holds
a pointer to the test function and the search value.

The documentation for this class was generated from the following file:

� DakotaList.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

184 DAKOTA Class Documentation

8.38 FundamentalVarConstraints Class Reference

Derived class within the VarConstraints hierarchy which employs the default data view (no variable or
domain type array merging).

Inheritance diagram for FundamentalVarConstraints::

FundamentalVarConstraints

VarConstraints VariablesUtil

Public Member Functions

� FundamentalVarConstraints (const ProblemDescDB &problem_db)

constructor

� � FundamentalVarConstraints ()

destructor

� const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

� void continuous_lower_bounds (const RealVector &c_l_bnds)

set the active continuous variable lower bounds

� const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

� void continuous_upper_bounds (const RealVector &c_u_bnds)

set the active continuous variable upper bounds

� const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

� void discrete_lower_bounds (const IntVector &d_l_bnds)

set the active discrete variable lower bounds

� const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

� void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

� const RealVector & inactive_continuous_lower_bounds () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.38 FundamentalVarConstraints Class Reference 185

return the inactive continuous lower bounds

� void inactive_continuous_lower_bounds (const RealVector &i_c_l_bnds)

set the inactive continuous lower bounds

� const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds

� void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds

� const IntVector & inactive_discrete_lower_bounds () const

return the inactive discrete lower bounds

� void inactive_discrete_lower_bounds (const IntVector &i_d_l_bnds)

set the inactive discrete lower bounds

� const IntVector & inactive_discrete_upper_bounds () const

return the inactive discrete upper bounds

� void inactive_discrete_upper_bounds (const IntVector &i_d_u_bnds)

set the inactive discrete upper bounds

� RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

� RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

� IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

� IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

� void write (ostream &s) const

write a variable constraints object to an ostream

� void read (istream &s)

read a variable constraints object from an istream

Private Attributes

� bool nonDFlag

this flag is set if uncertain variables are active (the default is design variables are active; see constructor
for logic)

� RealVector continuousDesignLowerBnds

the continuous design lower bounds array

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

186 DAKOTA Class Documentation

� RealVector continuousDesignUpperBnds

the continuous design upper bounds array

� IntVector discreteDesignLowerBnds

the discrete design lower bounds array

� IntVector discreteDesignUpperBnds

the discrete design upper bounds array

� RealVector uncertainDistLowerBnds

the uncertain distribution lower bounds array

� RealVector uncertainDistUpperBnds

the uncertain distribution upper bounds array

� RealVector continuousStateLowerBnds

the continuous state lower bounds array

� RealVector continuousStateUpperBnds

the continuous state upper bounds array

� IntVector discreteStateLowerBnds

the discrete state lower bounds array

� IntVector discreteStateUpperBnds

the discrete state upper bounds array

8.38.1 Detailed Description

Derived class within the VarConstraints hierarchy which employs the default data view (no variable or
domain type array merging).

Derived variable constraints classes take different views of the design, uncertain, and state variable types
and the continuous and discrete domain types. The FundamentalVarConstraints derived class separates the
design, uncertain, and state variable types as well as the continuous and discrete domain types. The result is
separate lower and upper bounds arrays for continuous design, discrete design, uncertain, continuous state,
and discrete state variables. This is the default approach, so all iterators and strategies not specifically
utilizing the All, Merged, or AllMerged views use this approach (see Variables::get_variables(problem_-
db) for variables type selection; variables type is passed to the VarConstraints constructor in Model).

8.38.2 Constructor & Destructor Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.38 FundamentalVarConstraints Class Reference 187

8.38.2.1 FundamentalVarConstraints (const ProblemDescDB & problem_db)

constructor

Extract fundamental lower and upper bounds (VariablesUtil is not used).

The documentation for this class was generated from the following files:

� FundamentalVarConstraints.H
� FundamentalVarConstraints.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

188 DAKOTA Class Documentation

8.39 FundamentalVariables Class Reference

Derived class within the Variables hierarchy which employs the default data view (no variable or domain
type array merging).

Inheritance diagram for FundamentalVariables::

FundamentalVariables

Variables VariablesUtil

Public Member Functions

� FundamentalVariables ()

default constructor

� FundamentalVariables (const ProblemDescDB &problem_db)

standard constructor

� � FundamentalVariables ()

destructor

� size_t tv () const

Returns total number of vars.

� size_t cv () const

Returns number of active continuous vars.

� size_t dv () const

Returns number of active discrete vars.

� const RealVector & continuous_variables () const

return the active continuous variables

� void continuous_variables (const RealVector &c_vars)

set the active continuous variables

� const IntVector & discrete_variables () const

return the active discrete variables

� void discrete_variables (const IntVector &d_vars)

set the active discrete variables

� const StringArray & continuous_variable_labels () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.39 FundamentalVariables Class Reference 189

return the active continuous variable labels

� void continuous_variable_labels (const StringArray &c_v_labels)

set the active continuous variable labels

� const StringArray & discrete_variable_labels () const

return the active discrete variable labels

� void discrete_variable_labels (const StringArray &d_v_labels)

set the active discrete variable labels

� const RealVector & inactive_continuous_variables () const

return the inactive continuous variables

� void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables

� const IntVector & inactive_discrete_variables () const

return the inactive discrete variables

� void inactive_discrete_variables (const IntVector &i_d_vars)

set the inactive discrete variables

� const StringArray & inactive_continuous_variable_labels () const

return the inactive continuous variable labels

� void inactive_continuous_variable_labels (const StringArray &i_c_v_labels)

set the inactive continuous variable labels

� const StringArray & inactive_discrete_variable_labels () const

return the inactive discrete variable labels

� void inactive_discrete_variable_labels (const StringArray &i_d_v_labels)

set the inactive discrete variable labels

� size_t acv () const

returns total number of continuous vars

� size_t adv () const

returns total number of discrete vars

� RealVector all_continuous_variables () const

returns a single array with all continuous variables

� IntVector all_discrete_variables () const

returns a single array with all discrete variables

� StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

190 DAKOTA Class Documentation

� StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

� StringArray all_variable_labels () const

returns a single array with all variable labels

� void read (istream &s)

read a variables object from an istream

� void write (ostream &s) const

write a variables object to an ostream

� void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

� void read_annotated (istream &s)

read a variables object in annotated format from an istream

� void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

� void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

� void read (BiStream &s)

read a variables object from the binary restart stream

� void write (BoStream &s) const

write a variables object to the binary restart stream

� void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

Private Member Functions

� void copy_rep (const Variables � vars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

� bool nonDFlag

this flag is set if uncertain variables are active (the default is design variables are active; see constructor
for logic)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.39 FundamentalVariables Class Reference 191

� RealVector continuousDesignVars

the continuous design variables array

� IntVector discreteDesignVars

the discrete design variables array

� RealVector uncertainVars

the uncertain variables array

� RealVector continuousStateVars

the continuous state variables array

� IntVector discreteStateVars

the discrete state variables array

� StringArray continuousDesignLabels

the continuous design variables label array

� StringArray discreteDesignLabels

the discrete design variables label array

� StringArray uncertainLabels

the uncertain variables label array

� StringArray continuousStateLabels

the continuous state variables label array

� StringArray discreteStateLabels

the discrete state variables label array

Friends

� bool operator== (const FundamentalVariables &vars1, const FundamentalVariables &vars2)

equality operator

8.39.1 Detailed Description

Derived class within the Variables hierarchy which employs the default data view (no variable or domain
type array merging).

Derived variables classes take different views of the design, uncertain, and state variable types and the con-
tinuous and discrete domain types. The FundamentalVariables derived class separates the design, uncertain,
and state variable types as well as the continuous and discrete domain types. The result is separate arrays
for continuous design, discrete design, uncertain, continuous state, and discrete state variables. This is the
default approach, so all iterators and strategies not specifically utilizing the All, Merged, or AllMerged
views use this approach (see Variables::get_variables(problem_db)).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

192 DAKOTA Class Documentation

8.39.2 Constructor & Destructor Documentation

8.39.2.1 FundamentalVariables (const ProblemDescDB & problem_db)

standard constructor

Extract fundamental variable types and labels (VariablesUtil is not used).

8.39.3 Friends And Related Function Documentation

8.39.3.1 bool operator== (const FundamentalVariables & vars1, const FundamentalVariables &
vars2) [friend]

equality operator

Checks each fundamental array using operator== from data_types.C. Labels are ignored.

The documentation for this class was generated from the following files:

� FundamentalVariables.H
� FundamentalVariables.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.40 GetLongOpt Class Reference 193

8.40 GetLongOpt Class Reference

GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute,
Lyon, France).

Inheritance diagram for GetLongOpt::

GetLongOpt

CommandLineHandler

Public Types

� enum OptType { Valueless, OptionalValue, MandatoryValue }

enum for different types of values associated with command line options.

Public Member Functions

� GetLongOpt (const char optmark= ’-’)

Constructor.

� � GetLongOpt ()

Destructor.

� int parse (int argc, char � const � argv)

parse the command line args (argc, argv).

� int parse (char � const str, char � const p)

parse a string of options (typically given from the environment).

� int enroll (const char � const opt, const OptType t, const char � const desc, const char � const val)

Add an option to the list of valid command options.

� const char � retrieve (const char � const opt) const

Retrieve value of option.

� void usage (ostream &outfile=cout) const

Print usage information to outfile.

� void usage (const char � str)

Change header of usage output to str.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

194 DAKOTA Class Documentation

Private Member Functions

� char � basename (char � const p) const

extract the base name from a string as delimited by ’/’

� int setcell (Cell � c, char � valtoken, char � nexttoken, const char � p)

internal convenience function for setting Cell::value

Private Attributes

� Cell � table

option table

� const char � ustring

usage message

� char � pname

program basename

� char optmarker

option marker

� int enroll_done

finished enrolling

� Cell � last

last entry in option table

8.40.1 Detailed Description

GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute,
Lyon, France).

GetLongOpt manages the definition and parsing of "long options." Command line options can be abbrevi-
ated as long as there is no ambiguity. If an option requires a value, the value should be separated from the
option either by whitespace or an "=".

8.40.2 Constructor & Destructor Documentation

8.40.2.1 GetLongOpt (const char optmark = ’-’)

Constructor.

Constructor for GetLongOpt takes an optional argument: the option marker. If unspecified, this defaults to
’-’, the standard (?) Unix option marker.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.40 GetLongOpt Class Reference 195

8.40.3 Member Function Documentation

8.40.3.1 int parse (int argc, char � const � argv)

parse the command line args (argc, argv).

A return value � 1 represents a parse error. Appropriate error messages are printed when errors are seen.
parse returns the the optind (see getopt(3)) if parsing is successful.

8.40.3.2 int parse (char � const str, char � const p)

parse a string of options (typically given from the environment).

A return value � 1 represents a parse error. Appropriate error messages are printed when errors are seen.
parse takes two strings: the first one is the string to be parsed and the second one is a string to be prefixed
to the parse errors.

8.40.3.3 int enroll (const char � const opt, const OptType t, const char � const desc, const char
� const val)

Add an option to the list of valid command options.

enroll adds option specifications to its internal database. The first argument is the option sting. The second
is an enum saying if the option is a flag (Valueless), if it requires a mandatory value (MandatoryValue) or
if it takes an optional value (OptionalValue). The third argument is a string giving a brief description of the
option. This description will be used by GetLongOpt::usage. GetLongOpt, for usage-printing, uses {$val}
to represent values needed by the options. { � $val � } is a mandatory value and {[$val]} is an optional
value. The final argument to enroll is the default string to be returned if the option is not specified. For
flags (options with Valueless), use "" (empty string, or in fact any arbitrary string) for specifying TRUE
and 0 (null pointer) to specify FALSE.

8.40.3.4 const char � retrieve (const char � const opt) const

Retrieve value of option.

The values of the options that are enrolled in the database can be retrieved using retrieve. This returns a
string and this string should be converted to whatever type you want. See atoi, atof, atol, etc. If a "parse"
is not done before retrieving all you will get are the default values you gave while enrolling! Ambiguities
while retrieving (may happen when options are abbreviated) are resolved by taking the matching option
that was enrolled last. For example, -{v} will expand to {-verify}. If you try to retrieve something you
didn’t enroll, you will get a warning message.

8.40.3.5 void usage (const char � str) [inline]

Change header of usage output to str.

GetLongOpt::usage is overloaded. If passed a string "str", it sets the internal usage string to "str". Otherwise
it simply prints the command usage.

The documentation for this class was generated from the following files:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

196 DAKOTA Class Documentation

� CommandLineHandler.H
� CommandLineHandler.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.41 Graphics Class Reference 197

8.41 Graphics Class Reference

The Graphics class provides a single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular
cataloguing of data for post-processing with Matlab, Tecplot, etc.

Public Member Functions

� Graphics ()

constructor

� � Graphics ()

destructor

� void create_plots_2d (const Variables &vars, const Response &response)

creates the 2d graphics window and initializes the plots

� void create_tabular_datastream (const Variables &vars, const Response &response, const String
&tabular_data_file)

opens the tabular data file stream and prints the headings

� void add_datapoint (const Variables &vars, const Response &response)

adds data to each window in the 2d graphics and adds a row to the tabular data file based on the results of
a model evaluation

� void add_datapoint (int i, double x, double y)

adds data to a single window in the 2d graphics

� void new_dataset (int i)

creates a separate line graphic for subsequent data points for a single window in the 2d graphics

� void show_data_3d (const RealVector &X, const RealVector &Y, const RealMatrix &F)

generate a new 3d plot for F(X,Y)

� void close ()

close graphics windows and tabular datastream

� void set_x_labels2d (const char � x_label)

set x label for each plot equal to x_label

� void set_y_labels2d (const char � y_label)

set y label for each plot equal to y_label

� void set_x_label2d (int i, const char � x_label)

set x label for ith plot equal to x_label

� void set_y_label2d (int i, const char � y_label)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

198 DAKOTA Class Documentation

set y label for ith plot equal to y_label

� void graphics_counter (int cntr)

set graphicsCntr equal to cntr

� void tabular_counter_label (const String &label)

set tabularCntrLabel equal to label

Private Attributes

� Graphics2D � graphics2D

pointer to the 2D graphics object

� bool win2dOn

flag to indicate if 2D graphics window is active

� bool win3dOn

flag to indicate if 3D graphics window is active

� bool tabularDataFlag

flag to indicate if tabular data stream is active

� int graphicsCntr

used for x axis values in 2D graphics and for 1st column in tabular data

� String tabularCntrLabel

label for counter used in first line comment w/i the tabular data file

� ofstream tabularDataFStream

file stream for tabulation of graphics data within compute_response

8.41.1 Detailed Description

The Graphics class provides a single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular
cataloguing of data for post-processing with Matlab, Tecplot, etc.

There is only one Graphics object (dakotaGraphics) and it is global (for convenient access from strategies,
models, and approximations).

8.41.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.41 Graphics Class Reference 199

8.41.2.1 void create_plots_2d (const Variables & vars, const Response & response)

creates the 2d graphics window and initializes the plots

Sets up a single event loop for duration of the dakotaGraphics object, continuously adding data to a single
window. There is no reset. To start over with a new data set, you need a new object (delete old and
instantiate new).

8.41.2.2 void create_tabular_datastream (const Variables & vars, const Response & response,
const String & tabular_data_file)

opens the tabular data file stream and prints the headings

Opens the tabular data file stream and prints headings, one for each continuous and discrete variable and
one for each response function, using the variable and response function labels. This tabular data is used
for post-processing of DAKOTA results in Matlab, Tecplot, etc.

8.41.2.3 void add_datapoint (const Variables & vars, const Response & response)

adds data to each window in the 2d graphics and adds a row to the tabular data file based on the results of
a model evaluation

Adds data to each 2d plot and each tabular data column (one for each active variable and for each response
function). graphicsCntr is used for the x axis in the graphics and the first column in the tabular data.

8.41.2.4 void add_datapoint (int i, double x, double y)

adds data to a single window in the 2d graphics

Adds data to a single 2d plot. Allows complete flexibility in defining other kinds of x-y plotting in the 2D
graphics.

8.41.2.5 void new_dataset (int i)

creates a separate line graphic for subsequent data points for a single window in the 2d graphics

Used for displaying multiple data sets within the same plot.

8.41.2.6 void show_data_3d (const RealVector & X, const RealVector & Y, const RealMatrix & F)

generate a new 3d plot for F(X,Y)

3D plotting clears data set and builds from scratch each time show_data3d is called. This still involves an
event loop waiting for a mouse click (right button) to continue. X = 1-D x grid values only and Y = 1-D Y
grid values only [X and Y are _not_ (X,Y) pairs]. F = 2-d grid of values for a single function for all (X,Y)
combinations.

The documentation for this class was generated from the following files:

� DakotaGraphics.H
� DakotaGraphics.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

200 DAKOTA Class Documentation

8.42 GridApplicInterface Class Reference

Derived application interface class which spawns simulation codes using grid services such as Condor or
Globus.

Inheritance diagram for GridApplicInterface::

GridApplicInterface

ApplicationInterface

Interface

Public Member Functions

� GridApplicInterface (const ProblemDescDB &problem_db, const size_t &num_fns)

constructor

� � GridApplicInterface ()

destructor

� void derived_map (const Variables &vars, const IntArray &asv, Response &response, int fn_eval_-
id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of per-
forming an evaluation that is specific to a derived class.

� void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of per-
forming an asynchronous evaluation that is specific to a derived class.

� void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version waits for at least one
completion.

� void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version is nonblocking and
will return without any completions if none are immediately available.

� int derived_synchronous_local_analysis (const int &analysis_id)

Execute a particular analysis (identified by analysis_id) synchronously on the local processor. Used for the
derived class specifics within ApplicationInterface::serve_analyses_synch().

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.42 GridApplicInterface Class Reference 201

Private Member Functions

� XMLObject getXML (const Variables &vars)

convert Variables -
�

XMLObject

� Response getResponse (const XMLObject &xml)

convert XMLObject -
�

Variables

Private Attributes

� StringArray hostNames

array of host names to execute remote jobs

� IntArray procsPerHost

number of processors available on each of the remote hosts

� MessageHandler � ideaMessageHandler

data required by the IDEA framework

8.42.1 Detailed Description

Derived application interface class which spawns simulation codes using grid services such as Condor or
Globus.

This class is currently a placeholder.

The documentation for this class was generated from the following files:

� GridApplicInterface.H
� GridApplicInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

202 DAKOTA Class Documentation

8.43 HermiteSurf Class Reference

Derived approximation class for Hermite polynomials (global approximation).

Inheritance diagram for HermiteSurf::

HermiteSurf

Approximation

Public Member Functions

� HermiteSurf (const ProblemDescDB &problem_db, const size_t &num_acv)

constructor

� � HermiteSurf ()

destructor

Protected Member Functions

� int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� const RealVector & approximation_coefficients ()

return the coefficient array computed by find_coefficients()

� void find_coefficients ()

find the Polynomial Chaos coefficients for the response surface

� Real get_value (const RealVector &x)

retrieve the function value for a given parameter set x

Private Member Functions

� void get_num_chaos ()

calculate number of Chaos according to the highest order of Chaos

� RealVector get_chaos (const RealVector &x, int order)

calculate the Polynomial Chaos from variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.43 HermiteSurf Class Reference 203

Private Attributes

� RealVector chaosCoeffs

numChaos entries

� RealVectorArray chaosSamples

numChaos � numCurrentPoints entries

� int numChaos

Number of terms in Polynomial Chaos Expansion.

� int highestOrder

Highest order of Hermite Polynomials in Expansion.

8.43.1 Detailed Description

Derived approximation class for Hermite polynomials (global approximation).

The HermiteSurf class provides a global approximation based on Hermite polynomials. It is used primarily
for polynomial chaos expansions (for stochastic finite element approaches to uncertainty quantification).

The documentation for this class was generated from the following files:

� HermiteSurf.H
� HermiteSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

204 DAKOTA Class Documentation

8.44 HierLayeredModel Class Reference

Derived model class within the layered model branch for managing hierarchical surrogates (models of
varying fidelity).

Inheritance diagram for HierLayeredModel::

HierLayeredModel

LayeredModel

Model

Public Member Functions

� HierLayeredModel (ProblemDescDB &problem_db)

constructor

� � HierLayeredModel ()

destructor

Protected Member Functions

� void derived_compute_response (const IntArray &asv)

portion of compute_response() specific to HierLayeredModel

� void derived_asynch_compute_response (const IntArray &asv)

portion of asynch_compute_response() specific to HierLayeredModel

� const ResponseArray & derived_synchronize ()

portion of synchronize() specific to HierLayeredModel

� const ResponseList & derived_synchronize_nowait ()

portion of synchronize_nowait() specific to HierLayeredModel

� const IntList & synchronize_nowait_completions ()

return completion id’s matching response list from derived_synchronize_nowait()

� Model subordinate_model ()

return highFidelityModel

� Interface & interface ()

return lowFidelityInterface

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.44 HierLayeredModel Class Reference 205

� void layering_bypass (bool bypass_flag)

set layeringBypass flag and pass request on to highFidelityModel for any lower-level layerings.

� void build_approximation ()

use highFidelityModel to compute the truth values needed for correction of lowFidelityInterface results

� void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in lowFidelityInterface and highFidelityModel

� String local_eval_synchronization ()

return lowFidelityInterface local evaluation synchronization setting

� int local_eval_concurrency ()

return lowFidelityInterface asynchronous evaluation concurrency

� bool derived_master_overload () const

flag which prevents overloading the master with a multiprocessor evaluation (request forwarded to low-
FidelityInterface)

� void derived_init_communicators (const int &max_iterator_concurrency)

set up lowFidelityInterface and highFidelityModel for parallel operations

� void derived_init_serial ()

set up lowFidelityInterface and highFidelityModel for serial operations.

� void reset_communicators ()

reset communicator partition data for the HierLayeredModel (request forwarded to lowFidelityInterface
and highFidelityModel)

� void free_communicators ()

deallocate communicator partitions for the HierLayeredModel (request forwarded to lowFidelityInterface
and highFidelityModel)

� void serve ()

Service lowFidelityInterface and highFidelityModel job requests received from the master. Completes when
a termination message is received from stop_servers().

� void stop_servers ()

Executed by the master to terminate lowFidelityInterface and highFidelityModel server operations when
iteration on the HierLayeredModel is complete.

� int total_eval_counter () const

return the total evaluation count for the HierLayeredModel (request forwarded to lowFidelityInterface)

� int new_eval_counter () const

return the new evaluation count for the HierLayeredModel (request forwarded to lowFidelityInterface)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

206 DAKOTA Class Documentation

Private Member Functions

� void update_high_fidelity_model ()

update highFidelityModel with current variable values/bounds/labels

Private Attributes

� Interface lowFidelityInterface

manages the approximate low fidelity function evaluations

� Model highFidelityModel

provides truth evaluations for computing corrections to the low fidelity results

� Response highFidResponse

the high fidelity response is computed in build_approximation() and needs class scope for use in automatic
surrogate construction in derived compute_response functions.

� IntList evalIdList

bookkeeps fnEvalId’s for correction of asynchronous low fidelity evaluations

8.44.1 Detailed Description

Derived model class within the layered model branch for managing hierarchical surrogates (models of
varying fidelity).

The HierLayeredModel class manages hierarchical models of varying fidelity. In particular, it uses a low
fidelity model as a surrogate for a high fidelity model. The class contains a lowFidelityInterface which
manages the approximate low fidelity function evaluations and a highFidelityModel which provides truth
evaluations for computing corrections to the low fidelity results.

8.44.2 Member Function Documentation

8.44.2.1 void derived_compute_response (const IntArray & asv) [protected, virtual]

portion of compute_response() specific to HierLayeredModel

Evaluate the approximate response using lowFidelityInterface, compute the high fidelity response with
build_approximation() (if not performed previously), and, if correction is active, correct the low fidelity
results.

Reimplemented from Model.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.44 HierLayeredModel Class Reference 207

8.44.2.2 void derived_asynch_compute_response (const IntArray & asv) [protected,
virtual]

portion of asynch_compute_response() specific to HierLayeredModel

Evaluate the approximate response using an asynchronous lowFidelityInterface mapping and com-
pute the high fidelity response with build_approximation() (for correcting the low fidelity results in
derived_synchronize() and derived_synchronize_nowait()) if not performed previously.

Reimplemented from Model.

8.44.2.3 const ResponseArray & derived_synchronize () [protected, virtual]

portion of synchronize() specific to HierLayeredModel

Perform a blocking retrieval of all asynchronous evaluations from lowFidelityInterface and, if automatic
correction is on, apply correction to each response in the array.

Reimplemented from Model.

8.44.2.4 const ResponseList & derived_synchronize_nowait () [protected, virtual]

portion of synchronize_nowait() specific to HierLayeredModel

Perform a nonblocking retrieval of currently available asynchronous evaluations from lowFidelityInterface
and, if automatic correction is on, apply correction to each response in the list.

Reimplemented from Model.

8.44.2.5 String local_eval_synchronization () [inline, protected, virtual]

return lowFidelityInterface local evaluation synchronization setting

Used in setting Model::asynchEvalFlag. highFidelityModel synchronization is used for setting asynch-
EvalFlag within highFidelityModel.

Reimplemented from Model.

8.44.2.6 int local_eval_concurrency () [inline, protected, virtual]

return lowFidelityInterface asynchronous evaluation concurrency

Used in setting Model::evaluationCapacity. highFidelityModel concurrency is used for setting evaluation-
Capacity within highFidelityModel.

Reimplemented from Model.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

208 DAKOTA Class Documentation

8.44.2.7 bool derived_master_overload () const [inline, protected, virtual]

flag which prevents overloading the master with a multiprocessor evaluation (request forwarded to low-
FidelityInterface)

iterator_eval_dedicated_master_flag()and multi_proc_eval_flag() flags from lowFidelityInterface are used.
Derived master overload for highFidelityModel is handled separately in highFidelityModel.compute_-
response().

Reimplemented from Model.

The documentation for this class was generated from the following files:

� HierLayeredModel.H
� HierLayeredModel.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.45 Interface Class Reference 209

8.45 Interface Class Reference

Base class for the interface class hierarchy.

Inheritance diagram for Interface::

Interface

ApplicationInterface ApproximationInterface

DirectFnApplicInterface ForkApplicInterface GridApplicInterface SysCallApplicInterface

Public Member Functions

� Interface ()

default constructor

� Interface (ProblemDescDB &problem_db, const size_t &num_acv, const size_t &num_fns)

standard constructor for envelope

� Interface (const Interface &interface)

copy constructor

� virtual � Interface ()

destructor

� Interface operator= (const Interface &interface)

assignment operator

� virtual void map (const Variables &vars, const IntArray &asv, Response &response, const bool
asynch_flag=false)

the function evaluator: provides a "mapping" from the variables to the responses.

� virtual const ResponseArray & synch ()

recovers data from a series of asynchronous evaluations (blocking)

� virtual const ResponseList & synch_nowait ()

recovers data from a series of asynchronous evaluations (nonblocking)

� virtual void serve_evaluations ()

evaluation server function for multiprocessor executions

� virtual void stop_evaluation_servers ()

send messages from iterator rank 0 to terminate evaluation servers

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

210 DAKOTA Class Documentation

� virtual void init_communicators (const IntArray &message_lengths, const int &max_iterator_-
concurrency)

allocate communicator partitions for concurrent evaluations within an iterator and concurrent multipro-
cessor analyses within an evaluation.

� virtual void reset_communicators (const IntArray &message_lengths)

reset the local parallel partition data for an interface (the partitions are already allocated in
ParallelLibrary).

� virtual void free_communicators ()

deallocate communicator partitions for concurrent evaluations within an iterator and concurrent multipro-
cessor analyses within an evaluation.

� virtual void init_serial ()

reset certain defaults for serial interface objects.

� virtual int asynch_local_evaluation_concurrency () const

return the user-specified concurrency for asynch local evaluations

� virtual String interface_synchronization () const

return the user-specified interface synchronization

� virtual int minimum_samples () const

returns the minimum number of samples required to build a particular ApproximationInterface (used by
SurrLayeredModels).

� virtual void build_global_approximation (Iterator &dace_iterator, const RealVector &lower_bnds,
const RealVector &upper_bnds)

builds a global approximation for use as a surrogate

� virtual void build_local_approximation (Model &actual_model)

builds a local approximation for use as a surrogate

� virtual void update_approximation (const RealVector &x_star, const Response &response_star)

updates an existing global approximation with new data

� virtual const RealVectorArray & approximation_coefficients ()

retrieve the approximation coefficients from each Approximation within an ApproximationInterface

� void assign_rep (Interface � interface_rep)

replaces existing letter with a new one

� const IntList & synch_nowait_completions ()

returns id’s matching response list from synch_nowait()

� const String & interface_type () const

returns the interface type

� int total_eval_counter () const

returns the total number of evaluations of the interface

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.45 Interface Class Reference 211

� int new_eval_counter () const

returns the number of new (nonduplicate) evaluations of the interface

� bool multi_proc_eval_flag () const

returns a flag signaling the use of multiprocessor evaluation partitions

� bool iterator_eval_dedicated_master_flag () const

returns a flag signaling the use of a dedicated master processor at the iterator-evaluation scheduling level

� bool is_null () const

function to check interfaceRep (does this envelope contain a letter?)

Protected Member Functions

� Interface (BaseConstructor, const ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

Protected Attributes

� String interfaceType

interface type may be (1) application: system, fork, direct, or grid; or (2) approximation: ann, rsm, mars,
hermite, ksm, mpa, taylor, or hierarchical.

� int fnEvalId

total evaluation counter

� int newFnEvalId

new (non-duplicate) evaluation counter

� IntList beforeSynchIdList

bookkeeps fnEvalId’s of _all_ asynchronous evaluations (new & duplicate)

� ResponseArray rawResponseArray

The complete array of responses returned after a blocking schedule of asynchronous evaluations.

� ResponseList rawResponseList

The partial list of responses returned after a nonblocking schedule of asynchronous evaluations.

� IntList completionList

identifies the responses in rawResponseList for nonblocking schedules.

� bool multiProcEvalFlag

flag for multiprocessor evaluation partitions (evalComm)

� bool ieDedMasterFlag

flag for dedicated master partitioning at the iterator level

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

212 DAKOTA Class Documentation

� bool silentFlag

flag for really quiet (silent) interface output

� bool quietFlag

flag for quiet interface output

� bool verboseFlag

flag for verbose interface output

� bool debugFlag

flag for really verbose (debug) interface output

Private Member Functions

� Interface � get_interface (ProblemDescDB &problem_db, const size_t &num_acv, const size_-
t &num_fns)

Used by the envelope to instantiate the correct letter class.

Private Attributes

� Interface � interfaceRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing interfaceRep

8.45.1 Detailed Description

Base class for the interface class hierarchy.

The Interface class hierarchy provides the part of a Model that is responsible for mapping a set of Variables
into a set of Responses. The mapping is performed using either a simulation-based application inter-
face or a surrogate-based approximation interface. For memory efficiency and enhanced polymorphism,
the interface hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133),
for which the base class (Interface) serves as the envelope and one of the derived classes (selected in
Interface::get_interface()) serves as the letter.

8.45.2 Constructor & Destructor Documentation

8.45.2.1 Interface ()

default constructor

used in Model envelope class instantiations

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.45 Interface Class Reference 213

8.45.2.2 Interface (ProblemDescDB & problem_db, const size_t & num_acv, const size_t &
num_fns)

standard constructor for envelope

Used in Model instantiation to build the envelope. This constructor only needs to extract enough data to
properly execute get_interface, since Interface::Interface(BaseConstructor, problem_db) builds the actual
base class data inherited by the derived interfaces.

8.45.2.3 Interface (const Interface & interface)

copy constructor

Copy constructor manages sharing of interfaceRep and incrementing of referenceCount.

8.45.2.4 � Interface () [virtual]

destructor

Destructor decrements referenceCount and only deletes interfaceRep if referenceCount is zero.

8.45.2.5 Interface (BaseConstructor, const ProblemDescDB & problem_db) [protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all inherited interfaces. get_interface()
instantiates a derived class letter and the derived constructor selects this base class constructor in its initial-
ization list (to avoid the recursion of the base class constructor calling get_interface() again). Since this is
the letter and the letter IS the representation, interfaceRep is set to NULL (an uninitialized pointer causes
problems in � Interface).

8.45.3 Member Function Documentation

8.45.3.1 Interface operator= (const Interface & interface)

assignment operator

Assignment operator decrements referenceCount for old interfaceRep, assigns new interfaceRep, and in-
crements referenceCount for new interfaceRep.

8.45.3.2 void assign_rep (Interface � interface_rep)

replaces existing letter with a new one

Similar to the assignment operator, the assign_rep() function decrements referenceCount for the old
interfaceRep and assigns the new interfaceRep. It is different in that it is used for publishing derived
class letters to existing envelopes, as opposed to sharing representations among multiple envelopes (in par-
ticular, assign_rep is passed a letter object and operator= is passed an envelope object). Letter assignment
is modeled after get_interface() in that it does not increment the referenceCount for the new interfaceRep.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

214 DAKOTA Class Documentation

8.45.3.3 Interface � get_interface (ProblemDescDB & problem_db, const size_t & num_acv, const
size_t & num_fns) [private]

Used by the envelope to instantiate the correct letter class.

used only by the envelope constructor to initialize interfaceRep to the appropriate derived type, as given by
the interfaceType attribute.

8.45.4 Member Data Documentation

8.45.4.1 ResponseArray rawResponseArray [protected]

The complete array of responses returned after a blocking schedule of asynchronous evaluations.

The array is the raw set of responses corresponding to all asynchronous map calls. This raw array is
postprocessed (i.e., finite difference gradients merged) in Model::synchronize() where it becomes response-
Array.

8.45.4.2 ResponseList rawResponseList [protected]

The partial list of responses returned after a nonblocking schedule of asynchronous evaluations.

The list is a partial set of completions which must be identified through the use of completionList. Post-
processing from raw to combined form (i.e., finite difference gradient merging) is not currently supported
in Model::synchronize_nowait().

The documentation for this class was generated from the following files:

� DakotaInterface.H
� DakotaInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.46 Iterator Class Reference 215

8.46 Iterator Class Reference

Base class for the iterator class hierarchy.

Inheritance diagram for Iterator::

Iterator

Analyzer Minimizer

NonD PStudyDACE LeastSq Optimizer

NonDReliability

NonDSampling

DDACEDesignCompExp

FSUDesignCompExp

ParamStudy

NL2SOLLeastSq

NLSSOLLeastSq

SNLLLeastSq

CONMINOptimizer

DOTOptimizer

JEGAOptimizer

NPSOLOptimizer

rSQPOptimizer

SGOPTOptimizer

SNLLOptimizer

Public Member Functions

� Iterator ()

default constructor

� Iterator (Model &model)

standard constructor for envelope

� Iterator (const Iterator &iterator)

copy constructor

� virtual � Iterator ()

destructor

� Iterator operator= (const Iterator &iterator)

assignment operator

� virtual void run_iterator ()

run the iterator

� virtual const Variables & iterator_variable_results () const

return the final iterator solution (variables)

� virtual const Response & iterator_response_results () const

return the final iterator solution (response)

� virtual void print_iterator_results (ostream &s) const

print the final iterator results

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

216 DAKOTA Class Documentation

� virtual void multi_objective_weights (const RealVector &multi_obj_wts)

set the relative weightings for multiple objective functions. Used by ConcurrentStrategy for Pareto set
optimization.

� virtual void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

reset sampling iterator

� virtual const String & sampling_scheme () const

return sampling name

� virtual String uses_method () const

return name of any enabling iterator used by this iterator

� virtual void method_recourse ()

perform a method switch, if possible, due to a detected conflict

� virtual const VariablesArray & all_variables () const

return the complete set of evaluated variables

� virtual const RealVectorArray & all_c_variables () const

return the complete set of evaluated continuous variables

� virtual const ResponseArray & all_responses () const

return the complete set of computed responses

� virtual const RealVectorArray & all_fn_responses () const

return the complete set of computed function responses

� void assign_rep (Iterator � iterator_rep)

replaces existing letter with a new one

� void user_defined_model (const Model &the_model)

set the model

� Model user_defined_model () const

return the model

� const String & method_name () const

return the method name

� const int & maximum_concurrency () const

return the maximum concurrency supported by the iterator

� void active_set_vector (const IntArray &asv)

set the default active set vector (for use with iterators that employ evaluate_parameter_sets())

� void iterator_response_results_asv (const IntArray &asv)

set the requested data for the final iterator response results

� void sub_iterator_flag (bool si_flag)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.46 Iterator Class Reference 217

set subIteratorFlag

� bool is_null () const

function to check iteratorRep (does this envelope contain a letter?)

Protected Member Functions

� Iterator (BaseConstructor, Model &model)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

� Iterator (NoDBBaseConstructor, Model &model)

base class for iterator classes constructed on the fly (no DB queries)

Protected Attributes

� Model userDefinedModel

shallow copy (shared rep) of the model passed into the constructor. A class member reference is not needed
in this case due to the presence of representation sharing in Models.

� const ProblemDescDB & probDescDB

class member reference to the problem description database

� String methodName

name of the iterator (the user’s method spec)

� int maxIterations

maximum number of iterations for the iterator

� int maxFunctionEvals

maximum number of fn evaluations for the iterator

� int numFunctions

number of response functions

� int maxConcurrency

maximum coarse-grained concurrency

� int numContinuousVars

number of active continuous vars.

� int numDiscreteVars

number of active discrete vars.

� int numVars

total number of vars. (active and inactive)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

218 DAKOTA Class Documentation

� IntArray activeSetVector

this vector tracks the data requirements for the response functions. It uses a 0 value for inactive functions
and, for active functions, sums 1 for value, 2 for gradient, and 4 for Hessian.

� IntArray finalResultsASV

this active set vector specifies the required final results to be returned by iterator_response_results()

� bool subIteratorFlag

flag indicating if this Iterator is a sub-iterator (NestedModel::subIterator) or
SurrLayeredModel::daceIterator).

� String gradientType

type of gradient data: analytic, numerical, mixed, or none

� String intervalType

type of numerical gradient interval: central or forward

� String methodSource

source of numerical gradient routine: dakota or vendor

� String hessianType

type of Hessian data: analytic, numerical, quasi, mixed, or none

� Real fdGradStepSize

relative finite difference step size for numerical gradients

� Real fdHessByGradStepSize

relative finite difference step size for numerical Hessians estimated using first-order differences of gradients

� Real fdHessByFnStepSize

relative finite difference step size for numerical Hessians estimated using second-order differences of func-
tion values

� bool silentOutput

flag for really quiet (silent) algorithm output

� bool quietOutput

flag for quiet algorithm output

� bool verboseOutput

flag for verbose algorithm output

� bool debugOutput

flag for really verbose (debug) algorithm output

� bool asynchFlag

copy of the model’s asynchronous evaluation flag

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.46 Iterator Class Reference 219

Private Member Functions

� Iterator � get_iterator (Model &model)

Used by the envelope to instantiate the correct letter class.

Private Attributes

� Iterator � iteratorRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing iteratorRep

8.46.1 Detailed Description

Base class for the iterator class hierarchy.

The Iterator class is the base class for one of the primary class hierarchies in DAKOTA. The iterator hi-
erarchy contains all of the iterative algorithms which use repeated execution of simulations as function
evaluations. For memory efficiency and enhanced polymorphism, the iterator hierarchy employs the "let-
ter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the base class (Iterator) serves as
the envelope and one of the derived classes (selected in Iterator::get_iterator()) serves as the letter.

8.46.2 Constructor & Destructor Documentation

8.46.2.1 Iterator ()

default constructor

The default constructor is used in Vector � Iterator � instantiations and for initialization of Iterator objects
contained in Strategy derived classes (see derived class header files). iteratorRep is NULL in this case (a
populated problem_db is needed to build a meaningful Iterator object). This makes it necessary to check
for NULL pointers in the copy constructor, assignment operator, and destructor.

8.46.2.2 Iterator (Model & model)

standard constructor for envelope

Used in iterator instantiations within strategy constructors. Envelope constructor only needs to extract
enough data to properly execute get_iterator, since Iterator(BaseConstructor, model) builds the actual base
class data inherited by the derived iterators.

8.46.2.3 Iterator (const Iterator & iterator)

copy constructor

Copy constructor manages sharing of iteratorRep and incrementing of referenceCount.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

220 DAKOTA Class Documentation

8.46.2.4 � Iterator () [virtual]

destructor

Destructor decrements referenceCount and only deletes iteratorRep when referenceCount reaches zero.

8.46.2.5 Iterator (BaseConstructor, Model & model) [protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor builds the base class data for all inherited iterators. get_iterator() instantiates a derived
class and the derived class selects this base class constructor in its initialization list (to avoid the recur-
sion of the base class constructor calling get_iterator() again). Since the letter IS the representation, its
representation pointer is set to NULL (an uninitialized pointer causes problems in � Iterator).

8.46.2.6 Iterator (NoDBBaseConstructor, Model & model) [protected]

base class for iterator classes constructed on the fly (no DB queries)

This constructor also builds base class data for inherited iterators. However, it is used for on-the-
fly instantiations for which DB queries cannot be used (e.g., ApproximationInterface instantiation of
DDACEDesignCompExp or NonDSampling, NonDReliability usage of optimizers, etc.). Therefore it only
sets attributes taken from the incoming model.

8.46.3 Member Function Documentation

8.46.3.1 Iterator operator= (const Iterator & iterator)

assignment operator

Assignment operator decrements referenceCount for old iteratorRep, assigns new iteratorRep, and incre-
ments referenceCount for new iteratorRep.

8.46.3.2 void run_iterator () [virtual]

run the iterator

This function is the primary run function for the iterator class hierarchy. All derived classes need to redefine
it.

Reimplemented in LeastSq, NonD, Optimizer, and PStudyDACE.

8.46.3.3 void assign_rep (Iterator � iterator_rep)

replaces existing letter with a new one

Similar to the assignment operator, the assign_rep() function decrements referenceCount for the old
iteratorRep and assigns the new iteratorRep. It is different in that it is used for publishing derived class

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.46 Iterator Class Reference 221

letters to existing envelopes, as opposed to sharing representations among multiple envelopes (in particu-
lar, assign_rep is passed a letter object and operator= is passed an envelope object). Letter assignment is
modeled after get_iterator() in that it does not increment the referenceCount for the new iteratorRep.

8.46.3.4 Iterator � get_iterator (Model & model) [private]

Used by the envelope to instantiate the correct letter class.

Used only by the envelope constructor to initialize iteratorRep to the appropriate derived type, as given by
the methodName attribute.

8.46.4 Member Data Documentation

8.46.4.1 Real fdGradStepSize [protected]

relative finite difference step size for numerical gradients

A scalar value (instead of the vector fd_gradient_step_size spec) is used within the iterator hierarchy since
this attribute is only used to publish a step size to vendor numerical gradient algorithms.

8.46.4.2 Real fdHessByGradStepSize [protected]

relative finite difference step size for numerical Hessians estimated using first-order differences of gradients

A scalar value (instead of the vector fd_hessian_step_size spec) is used within the iterator hierarchy since
this attribute is only used to publish a step size to vendor numerical Hessian algorithms.

8.46.4.3 Real fdHessByFnStepSize [protected]

relative finite difference step size for numerical Hessians estimated using second-order differences of func-
tion values

A scalar value (instead of the vector fd_hessian_step_size spec) is used within the iterator hierarchy since
this attribute is only used to publish a step size to vendor numerical Hessian algorithms.

The documentation for this class was generated from the following files:

� DakotaIterator.H
� DakotaIterator.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

222 DAKOTA Class Documentation

8.47 JEGAEvaluator Class Reference

This evaluator uses Sandia National Laboratories Dakota software.

Public Member Functions

� const Model & GetDakotaModel () const

Returns the "_model" object by const reference.

� virtual bool Evaluate (DesignGroup &group)

Does evaluation of each design in "group’.

� virtual bool Evaluate (Design &des)

This method cannot be used!!

� virtual string GetName () const

Returns the proper name of this operator.

� virtual string GetDescription () const

Returns a full description of what this operator does and how.

� virtual GeneticAlgorithmOperator � Clone (GeneticAlgorithm &algorithm) const

Creates and returns a pointer to an exact duplicate of this operator.

� JEGAEvaluator (GeneticAlgorithm &alg, Model &model)

Constructs a JEGAEvaluator for use by "alg".

� JEGAEvaluator (const JEGAEvaluator ©)

Copy constructs a JEGAEvaluator.

� JEGAEvaluator (const JEGAEvaluator ©, GeneticAlgorithm &algorithm, Model &model)

Copy constructs a JEGAEvaluator for use by "algorithm".

Static Public Member Functions

� string Name ()

Returns the proper name of this operator.

� string Description ()

Returns a full description of what this operator does and how.

� GeneticAlgorithmOperator � Create (GeneticAlgorithm &algorithm)

returns a new instance of this operator class for use by "algorithm"

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.47 JEGAEvaluator Class Reference 223

Protected Member Functions

� Model & GetDakotaModel ()

Returns the "_model" object by reference.

� RealVector GetContinuumVariableValues (const Design &des) const

Returns the continuous Design variable values held in Design "des".

� IntVector GetDiscreteVariableValues (const Design &des) const

Returns the discrete Design variable values held in Design "des".

� void GetContinuumVariableValues (const Design &from, RealVector &into) const

Places the continuous Design variable values from Design "from" into RealVector "into".

� void GetDiscreteVariableValues (const Design &from, IntVector &into) const

Places the discrete Design variable values from Design "from" into IntVector "into".

� void SeparateVariables (const Design &from, IntVector &intoDisc, RealVector &intoCont) const

This method fills "intoDisc" and "intoCont" appropriately using the values of "from".

� void RecordResponses (const RealVector &from, Design &into) const

Records the computed objective and constraint function values into "into".

� size_t GetNumberNonLinearConstraints () const

Returns the number of non-linear constraints for the problem.

� size_t GetNumberLinearConstraints () const

Returns the number of linear constraints for the problem.

Private Member Functions

� JEGAEvaluator (GeneticAlgorithm &alg)

This constructor has no implementation and cannot be used.

Private Attributes

� Model & _model

The Model known by this evaluator.

Static Private Attributes

� const bool _is_standard_registered

Initialization causes registry with the StandarOperatorGroup.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

224 DAKOTA Class Documentation

8.47.1 Detailed Description

This evaluator uses Sandia National Laboratories Dakota software.

Evaluations are carried out using a Model which is known by reference to this class. This provides the
advantage of execution on massively parallel computing architectures.

8.47.2 Constructor & Destructor Documentation

8.47.2.1 JEGAEvaluator (GeneticAlgorithm & alg) [private]

This constructor has no implementation and cannot be used.

This constructor can never be used. It is provided so that this operator can still be registered in an operator
registry even though it can never be instantiated from there.

8.47.3 Member Function Documentation

8.47.3.1 GeneticAlgorithmOperator � Create (GeneticAlgorithm & algorithm) [static]

returns a new instance of this operator class for use by "algorithm"

This method cannot be used. It is provided so that this operator can still be registered in operator groups.
Attempts to use this method will result in program abort.

8.47.3.2 RealVector GetContinuumVariableValues (const Design & des) const [protected]

Returns the continuous Design variable values held in Design "des".

It returns them as a RealVector for use in the Dakota interface. The values in the returned vector will be
the actual values intended for use in the evaluation functions.

8.47.3.3 IntVector GetDiscreteVariableValues (const Design & des) const [protected]

Returns the discrete Design variable values held in Design "des".

It returns them as a IntVector for use in the Dakota interface. The values in the returned vector will
be the values for the design variables as far as JEGA knows. However, in actuality, the values are the
representations due to the way that Dakota manages discrete variables.

8.47.3.4 void GetContinuumVariableValues (const Design & from, RealVector & into) const
[protected]

Places the continuous Design variable values from Design "from" into RealVector "into".

The values in the returned vector will be the actual values intended for use in the evaluation functions.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.47 JEGAEvaluator Class Reference 225

8.47.3.5 void GetDiscreteVariableValues (const Design & from, IntVector & into) const
[protected]

Places the discrete Design variable values from Design "from" into IntVector "into".

The values placed in the vector will be the values for the design variables as far as JEGA knows. However,
in actuality, the values are the representations due to the way that Dakota manages discrete variables.

8.47.3.6 void SeparateVariables (const Design & from, IntVector & intoDisc, RealVector &
intoCont) const [protected]

This method fills "intoDisc" and "intoCont" appropriately using the values of "from".

It is more efficient to use this method than to use GetDiscreateVariableValues and GetContinuumVariable-
Values separately if you want both.

8.47.3.7 void RecordResponses (const RealVector & from, Design & into) const [protected]

Records the computed objective and constraint function values into "into".

This method takes the response values stored in "from" and properly transfers them into the "into" design.

8.47.3.8 bool Evaluate (DesignGroup & group) [virtual]

Does evaluation of each design in "group’.

This method uses the Model know by this class to get Designs evaluated. It properly formats the Design
class information in a way that Dakota will understand and then interprets the Dakota results and puts them
back into the Design class object. It respects the asynchronous flag in the Model so evaluations may occur
synchronously or asynchronously.

8.47.3.9 bool Evaluate (Design & des) [virtual]

This method cannot be used!!

This method does nothing and cannot be called. This is because in the case of asynchronous evaluation,
this method would be unable to conform. It would require that each evaluation be done in a synchronous
fashion.

8.47.4 Member Data Documentation

8.47.4.1 const bool _is_standard_registered [static, private]

Initial value:

StandardOperatorGroup::EvaluatorRegistry().Register(
JEGAEvaluator::Name(), &JEGAEvaluator::Create)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

226 DAKOTA Class Documentation

Initialization causes registry with the StandarOperatorGroup.

This flag indicates whether or not this class was properly registered with the StandardOperatorGroup on
startup. The JEGAEvaluator is a special case that registers itself with the group instead of having the group
register it.

8.47.4.2 Model& _model [private]

The Model known by this evaluator.

It is through this model that evaluations will take place.

The documentation for this class was generated from the following files:

� JEGAEvaluator.H
� JEGAEvaluator.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.48 JEGAOptimizer Class Reference 227

8.48 JEGAOptimizer Class Reference

Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms.

Inheritance diagram for JEGAOptimizer::

JEGAOptimizer

Optimizer

Minimizer

Iterator

Public Member Functions

� const GeneticAlgorithm & GetTheGA () const

Returns the JEGA being used to optimize the problem (const).

� GeneticAlgorithm & GetTheGA ()

Returns the JEGA being used to optimize the problem (non-const).

� const DesignTarget & GetTheTarget () const

Returns the DesignTarget created here being used by the GA (const).

� DesignTarget & GetTheTarget ()

Returns the DesignTarget created here being used by the GA (non-const).

� virtual void find_optimum ()

Performs the iterations to determine the optimal set of solution.

� JEGAOptimizer (Model &model, const string &method)

Constructs a JEGAOptimizer class object.

� � JEGAOptimizer ()

Destructs a JEGAOptimizer.

Protected Member Functions

� void CreateTheGA ()

This method creates the GA.

� void LoadTheGA ()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

228 DAKOTA Class Documentation

Loads required information into a GA.

� void CreateTheTarget ()

This method creates but doesn’t load the DesignTarget.

� void LoadTheTarget ()

This method creates but doesn’t load the DesignTarget.

� void CreateDesignVariableInfos ()

Creates but doesn’t load DesignVariableInfo objects.

� void LoadDesignVariableInfos ()

Loads information into the DesignVariableInfo objects.

� void CreateConstraintInfos ()

Creates but doesn’t load ConstraintInfo objects.

� void LoadConstraintInfos ()

Loads information into the ConstraintInfo objects.

� void ExtractOperatorParameters (GeneticAlgorithmOperator � op)

This method requests that "op" retrieve its parameter values from "params".

� void VerifyValidOperator (GeneticAlgorithmOperator � op, const string &str)

This method verifies that "op" is not null.

Private Attributes

� GeneticAlgorithm � _theGA

This is a pointer to the instantiated GeneticAlgorithm.

� DesignTarget � _theTarget

This is a pointer to the DesignTarget object for the GeneticAlgorithm.

� JEGAEvaluator � _theEvaluator

A persistant pointer to the Evaluator created for the GeneticAlgorithm.

� string _method

The type of GA to create. Currently one of "moga" and "soga".

Static Private Attributes

� string _sogaMethodText

The text that indicates the SOGA method.

� string _mogaMethodText

The text that indicates the MOGA method.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.48 JEGAOptimizer Class Reference 229

8.48.1 Detailed Description

Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms.

This class encapsulates the necessary functionality for creating and properly initializing a Genetic-
Algorithm.

8.48.2 Constructor & Destructor Documentation

8.48.2.1 JEGAOptimizer (Model & model, const string & method)

Constructs a JEGAOptimizer class object.

This method does much of the initialization work for the algorithm.

8.48.3 Member Function Documentation

8.48.3.1 void CreateTheGA () [protected]

This method creates the GA.

It instantiates the GA and all the operators.

8.48.3.2 void LoadTheGA () [protected]

Loads required information into a GA.

This method must be called prior to attempting any optimization with the GA. It does what is necessary to
load the target properly.

8.48.3.3 void CreateTheTarget () [protected]

This method creates but doesn’t load the DesignTarget.

It instantiates the Target and the associated information objects. The information however is not considered
current until LoadTheTarget is called (which should not be done in the constructor).

8.48.3.4 void LoadTheTarget () [protected]

This method creates but doesn’t load the DesignTarget.

This method must be called prior to attempting any optimization with the GA. It does what is necessary to
load the target properly.

8.48.3.5 void CreateDesignVariableInfos () [protected]

Creates but doesn’t load DesignVariableInfo objects.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

230 DAKOTA Class Documentation

This method records the info objects with the target which must already have been created.

8.48.3.6 void LoadDesignVariableInfos () [protected]

Loads information into the DesignVariableInfo objects.

Information includes stuff like bounds, labels, discrete values, etc.

8.48.3.7 void CreateConstraintInfos () [protected]

Creates but doesn’t load ConstraintInfo objects.

This method records the info objects with the target which must already have been created.

8.48.3.8 void LoadConstraintInfos () [protected]

Loads information into the ConstraintInfo objects.

Information includes stuff like targets and bounds, labels, and coefficients for linear constraints.

8.48.3.9 void ExtractOperatorParameters (GeneticAlgorithmOperator � op) [protected]

This method requests that "op" retrieve its parameter values from "params".

If "op" is unable to do so, this method causes an abort.

8.48.3.10 void VerifyValidOperator (GeneticAlgorithmOperator � op, const string & str)
[protected]

This method verifies that "op" is not null.

If it is, this method causes an abort.

8.48.3.11 void find_optimum () [virtual]

Performs the iterations to determine the optimal set of solution.

Override of pure virtual method in Optimizer base class.

Implements Optimizer.

The documentation for this class was generated from the following files:

� JEGAOptimizer.H
� JEGAOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.49 KrigApprox Class Reference 231

8.49 KrigApprox Class Reference

Utility class for kriging interpolation.

Public Member Functions

� KrigApprox (int, int, const RealVector &, const RealVector &, const RealVector &)

constructor

� � KrigApprox ()

destructor

� void ModelBuild (int, int, const RealVector &, const RealVector &, bool)

Function to compute vector and matrix terms in the kriging surface.

� Real ModelApply (int, int, const RealVector &)

Function returns a response value using the kriging surface.

Private Attributes

� int N1

Size variable for CONMIN arrays. See CONMIN manual.

� int N2

Size variable for CONMIN arrays. See CONMIN manual.

� int N3

Size variable for CONMIN arrays. See CONMIN manual.

� int N4

Size variable for CONMIN arrays. See CONMIN manual.

� int N5

Size variable for CONMIN arrays. See CONMIN manual.

� int conminSingleArray

Array size parameter needed in interface to CONMIN.

� int numcon

CONMIN variable: Number of constraints.

� int NFDG

CONMIN variable: Finite difference flag.

� int IPRINT

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

232 DAKOTA Class Documentation

CONMIN variable: Flag to control amount of output data.

� int ITMAX

CONMIN variable: Flag to specify the maximum number of iterations.

� Real FDCH

CONMIN variable: Relative finite difference step size.

� Real FDCHM

CONMIN variable: Absolute finite difference step size.

� Real CT

CONMIN variable: Constraint thickness parameter.

� Real CTMIN

CONMIN variable: Minimum absolute value of CT used during optimization.

� Real CTL

CONMIN variable: Constraint thickness parameter for linear and side constraints.

� Real CTLMIN

CONMIN variable: Minimum value of CTL used during optimization.

� Real DELFUN

CONMIN variable: Relative convergence criterion threshold.

� Real DABFUN

CONMIN variable: Absolute convergence criterion threshold.

� int conminInfo

CONMIN variable: status flag for optimization.

� Real � S

Internal CONMIN array.

� Real � G1

Internal CONMIN array.

� Real � G2

Internal CONMIN array.

� Real � B

Internal CONMIN array.

� Real � C

Internal CONMIN array.

� int � MS1

Internal CONMIN array.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.49 KrigApprox Class Reference 233

� Real � SCAL

Internal CONMIN array.

� Real � DF

Internal CONMIN array.

� Real � A

Internal CONMIN array.

� int � ISC

Internal CONMIN array.

� int � IC

Internal CONMIN array.

� Real � conminThetaVars

Temporary array of design variables used by CONMIN (length N1 = numdv+2).

� Real � conminThetaLowerBnds

Temporary array of lower bounds used by CONMIN (length N1 = numdv+2).

� Real � conminThetaUpperBnds

Temporary array of upper bounds used by CONMIN (length N1 = numdv+2).

� Real ALPHAX

Internal CONMIN variable: 1-D search parameter.

� Real ABOBJ1

Internal CONMIN variable: 1-D search parameter.

� Real THETA

Internal CONMIN variable: mean value of push-off factor.

� Real PHI

Internal CONMIN variable: "participation coefficient".

� int NSIDE

Internal CONMIN variable: side constraints parameter.

� int NSCAL

Internal CONMIN variable: scaling control parameter.

� int NACMX1

Internal CONMIN variable: estimate of 1+(max # of active constraints).

� int LINOBJ

Internal CONMIN variable: linear objective function identifier (unused).

� int ITRM

Internal CONMIN variable: diminishing return criterion iteration number.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

234 DAKOTA Class Documentation

� int ICNDIR

Internal CONMIN variable: conjugate direction restart parameter.

� int IGOTO

Internal CONMIN variable: internal optimization termination flag.

� int NAC

Internal CONMIN variable: number of active and violated constraints.

� int INFOG

Internal CONMIN variable: gradient information flag.

� int ITER

Internal CONMIN variable: iteration count.

� int iFlag

Fortran77 flag for kriging computations.

� Real betaHat

Estimate of the beta term in the kriging model..

� Real maxLikelihoodEst

Error term computed via Maximum Likelihood Estimation.

� int numNewPts

Size variable for the arrays used in kriging computations.

� int numSampQuad

Size variable for the arrays used in kriging computations.

� Real � thetaVector

Array of correlation parameters for the kriging model.

� Real � xMatrix

A 2-D array of design points used to build the kriging model.

� Real � yValueVector

Array of response values corresponding to the array of design points.

� Real � xNewVector

A 2-D array of design points where the kriging model will be evaluated.

� Real � yNewVector

Array of response values corresponding to the design points specified in xNewVector.

� Real � thetaLoBndVector

Array of lower bounds in optimizer-to-kriging interface.

� Real � thetaUpBndVector

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.49 KrigApprox Class Reference 235

Array of upper bounds in optimizer-to-kriging interface.

� Real � constraintVector

Array of constraint values (used with optimizer).

� Real � rhsTermsVector

Internal array for kriging Fortran77 code: matrix algebra result.

� int � iPivotVector

Internal array for kriging Fortran77 code: pivot vector for linear algebra.

� Real � correlationMatrix

Internal array for kriging Fortran77 code: correlation matrix.

� Real � invcorrelMatrix

Internal array for kriging Fortran77 code: inverse correlation matrix.

� Real � fValueVector

Internal array for kriging Fortran77 code: response value vector.

� Real � fRinvVector

Internal array for kriging Fortran77 code: vector � matrix result.

� Real � yfbVector

Internal array for kriging Fortran77 code: vector arithmetic result.

� Real � yfbRinvVector

Internal array for kriging Fortran77 code: vector � matrix result.

� Real � rXhatVector

Internal array for kriging Fortran77 code: local correlation vector.

� Real � workVector

Internal array for kriging Fortran77 code: temporary storage.

� Real � workVectorQuad

Internal array for kriging Fortran77 code: temporary storage.

� int � iworkVector

Internal array for kriging Fortran77 code: temporary storage.

8.49.1 Detailed Description

Utility class for kriging interpolation.

The KrigApprox class provides utilities for the KrigingSurf class. It is based on the Ph.D. thesis work of
Tony Giunta.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

236 DAKOTA Class Documentation

8.49.2 Member Function Documentation

8.49.2.1 Real ModelApply (int, int, const RealVector &)

Function returns a response value using the kriging surface.

The response value is computed at the design point specified by the RealVector function argument.

8.49.3 Member Data Documentation

8.49.3.1 int N1 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N1 = number of variables + 2

8.49.3.2 int N2 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N2 = number of constraints + 2 � (number of variables)

8.49.3.3 int N3 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N3 = Maximum possible number of active constraints.

8.49.3.4 int N4 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N4 = Maximum(N3,number of variables)

8.49.3.5 int N5 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N5 = 2 � (N4)

8.49.3.6 Real CT [private]

CONMIN variable: Constraint thickness parameter.

The value of CT decreases in magnitude during optimization.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.49 KrigApprox Class Reference 237

8.49.3.7 Real � S [private]

Internal CONMIN array.

Move direction in N-dimensional space.

8.49.3.8 Real � G1 [private]

Internal CONMIN array.

Temporary storage of constraint values.

8.49.3.9 Real � G2 [private]

Internal CONMIN array.

Temporary storage of constraint values.

8.49.3.10 Real � B [private]

Internal CONMIN array.

Temporary storage for computations involving array S.

8.49.3.11 Real � C [private]

Internal CONMIN array.

Temporary storage for use with arrays B and S.

8.49.3.12 int � MS1 [private]

Internal CONMIN array.

Temporary storage for use with arrays B and S.

8.49.3.13 Real � SCAL [private]

Internal CONMIN array.

Vector of scaling parameters for design parameter values.

8.49.3.14 Real � DF [private]

Internal CONMIN array.

Temporary storage for analytic gradient data.

8.49.3.15 Real � A [private]

Internal CONMIN array.

Temporary 2-D array for storage of constraint gradients.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

238 DAKOTA Class Documentation

8.49.3.16 int � ISC [private]

Internal CONMIN array.

Array of flags to identify linear constraints. (not used in this implementation of CONMIN)

8.49.3.17 int � IC [private]

Internal CONMIN array.

Array of flags to identify active and violated constraints

8.49.3.18 int iFlag [private]

Fortran77 flag for kriging computations.

iFlag=1 computes vector and matrix terms for the kriging surface, iFlag=2 computes the response value
(using kriging) at the user-supplied design point.

The documentation for this class was generated from the following files:

� KSMSurf.H
� KSMSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.50 KrigingSurf Class Reference 239

8.50 KrigingSurf Class Reference

Derived approximation class for kriging interpolation.

Inheritance diagram for KrigingSurf::

KrigingSurf

Approximation

Public Member Functions

� KrigingSurf (const ProblemDescDB &problem_db, const size_t &num_acv)

constructor

� � KrigingSurf ()

destructor

Protected Member Functions

� void find_coefficients ()

calculate the data fit coefficients using the currentPoints list of SurrogateDataPoints

� int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� Real get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

Private Attributes

� KrigApprox � krigObject

Kriging Surface object declaration.

� RealVector x_matrix

A 2-d array of all sample sites (design points) used to create the kriging surface.

� RealVector f_of_x_array

An array of response values; one response value per sample site.

� RealVector correlationVector

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

240 DAKOTA Class Documentation

An array of correlation parameter values used to build the kriging surface.

� bool runConminFlag

Flag to run CONMIN (value=1) or use user-supplied correlations (value=0).

8.50.1 Detailed Description

Derived approximation class for kriging interpolation.

The KrigingSurf class uses a the kriging approach to interpolate between data points. It is based on the
Ph.D. thesis work of Tony Giunta.

The documentation for this class was generated from the following files:

� KSMSurf.H
� KSMSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.51 LayeredModel Class Reference 241

8.51 LayeredModel Class Reference

Base class for the layered models (SurrLayeredModel and HierLayeredModel).

Inheritance diagram for LayeredModel::

LayeredModel

Model

HierLayeredModel SurrLayeredModel

Protected Member Functions

� LayeredModel (ProblemDescDB &problem_db)

constructor

� � LayeredModel ()

destructor

� void compute_correction (const Response &truth_response, const Response &approx_response,
const RealVector &c_vars)

compute the correction required to bring approx_response into agreement with truth_response

� void apply_correction (Response &approx_response, const RealVector &c_vars, bool quiet_-
flag=false)

apply the correction computed in compute_correction() to approx_response

� void check_submodel_compatibility (const Model &sub_model)

verify compatibility between LayeredModel attributes and attributes of the submodel
(SurrLayeredModel::actualModel or HierLayeredModel::highFidelityModel)

� bool force_rebuild ()

evaluate whether a rebuild of the approximation should be forced based on changes in the inactive data

� void auto_correction (bool correction_flag)

sets autoCorrection to on (true) or off (false)

� bool auto_correction ()

returns autoCorrection setting

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

242 DAKOTA Class Documentation

Protected Attributes

� ResponseArray correctedResponseArray

array of corrected responses used in derived_synchronize() functions

� ResponseList correctedResponseList

list of corrected responses used in derived_synchronize_nowait() functions

� RealVectorList rawCVarsList

list of raw continuous variables used by apply_correction(). Model::varsList cannot be used for this purpose
since it does not contain lower level variables sets from finite differencing.

� String correctionType

approximation correction approach to be used: additive or multiplicative

� short correctionOrder

approximation correction order to be used: 0, 1, or 2

� size_t approxBuilds

number of calls to build_approximation()

� bool autoCorrection

a flag which controls the use of apply_correction() in SurrLayeredModel and HierLayeredModel approxi-
mate response computations

� bool layeringBypass

a flag which allows bypassing the approximation for evaluations on the underlying truth model.

� String approxType

approximation type identifier string: global, local, or hierarchical

� String refitInactive

flag denoting a user setting for rebuilding the approximation when changes occur to the inactive variables
data.

� RealVector fitInactiveCVars

stores a copy of the inactive continuous variables when the approximation is built; used to detect when a
rebuild is required.

� RealVector fitInactiveCLowerBnds

stores a copy of the inactive continuous lower bounds when the approximation is built; used to detect when
a rebuild is required.

� RealVector fitInactiveCUpperBnds

stores a copy of the inactive continuous upper bounds when the approximation is built; used to detect when
a rebuild is required.

� IntVector fitInactiveDVars

stores a copy of the inactive discrete variables when the approximation is built; used to detect when a
rebuild is required.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.51 LayeredModel Class Reference 243

� IntVector fitInactiveDLowerBnds

stores a copy of the inactive discrete lower bounds when the approximation is built; used to detect when a
rebuild is required.

� IntVector fitInactiveDUpperBnds

stores a copy of the inactive discrete upper bounds when the approximation is built; used to detect when a
rebuild is required.

Private Member Functions

� void apply_additive_correction (RealVector &alpha_corrected_fns, RealMatrix &alpha_corrected_-
grads, RealMatrixArray &alpha_corrected_hessians, const RealVector &c_vars, const IntArray
&asv)

internal convenience function for applying additive corrections

� void apply_multiplicative_correction (RealVector &beta_corrected_fns, RealMatrix &beta_-
corrected_grads, RealMatrixArray &beta_corrected_hessians, const String &approx_interf_id, const
RealVector &c_vars, const IntArray &asv)

internal convenience function for applying multiplicative corrections

Private Attributes

� bool correctionComputed

flag indicating whether or not a correction is available

� bool badScalingFlag

flag used to indicate function values near zero for multiplicative corrections; triggers an automatic switch
to additive corrections

� bool combinedFlag

flag indicating the combination of additive/multiplicative corrections

� bool computeAdditive

flag indicating the need for additive correction calculations

� bool computeMultiplicative

flag indicating the need for multiplicative correction calculations

� RealVector addCorrFns

0th-order additive correction term: equals the difference between high and low fidelity model values at
x=x_center.

� RealMatrix addCorrGrads

1st-order additive correction term: equals the gradient of the high/low function difference at x=x_center.

� RealMatrixArray addCorrHessians

2nd-order additive correction term: equals the Hessian of the high/low function difference at x=x_center.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

244 DAKOTA Class Documentation

� RealVector multCorrFns

0th-order multiplicative correction term: equals the ratio of high fidelity to low fidelity model values at
x=x_center.

� RealMatrix multCorrGrads

1st-order multiplicative correction term: equals the gradient of the high/low function ratio at x=x_center.

� RealMatrixArray multCorrHessians

2nd-order multiplicative correction term: equals the Hessian of the high/low function ratio at x=x_center.

� RealVector combineFactors

factors for combining additive and multiplicative corrections. Each factor is the weighting applied to the
additive correction and 1.-factor is the weighting applied to the multiplicative correction. The factor value is
determined by an additional requirement to match the high fidelity function value at the previous correction
point (e.g., previous trust region center). This results in a multipoint correction instead of a strictly local
correction.

� RealVector correctionCenterPt

The point in parameter space where the current correction is calculated (often the center of the current trust
region). Used in calculating (x - x_c) terms in 1st-/2nd-order corrections.

� RealVector correctionPrevCenterPt

copy of correctionCenterPt from the previous correction cycle

� RealVector approxFnsCenter

Surrogate function values at the current correction point which are needed as a fall back if the current
surrogate function values are unavailable when applying 1st-/2nd-order multiplicative corrections.

� RealVector approxFnsPrevCenter

copy of approxFnsCenter from the previous correction cycle

� RealMatrix approxGradsCenter

Surrogate gradient values at the current correction point which are needed as a fall back if the current
surrogate function gradients are unavailable when applying 1st-/2nd-order multiplicative corrections.

� RealVector truthFnsCenter

Truth function values at the current correction point.

� RealVector truthFnsPrevCenter

copy of truthFnsCenter from the previous correction cycle

8.51.1 Detailed Description

Base class for the layered models (SurrLayeredModel and HierLayeredModel).

The LayeredModel class provides common functions to derived classes for computing and applying cor-
rections to approximations.

8.51.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.51 LayeredModel Class Reference 245

8.51.2.1 void compute_correction (const Response & truth_response, const Response &
approx_response, const RealVector & c_vars) [protected, virtual]

compute the correction required to bring approx_response into agreement with truth_response

Compute an additive or multiplicative correction that corrects the approx_response to have 0th-order con-
sistency (matches values), 1st-order consistency (matches values and gradients), or 2nd-order consistency
(matches values, gradients, and Hessians) with the truth_response at a single point (e.g., the center of a trust
region). The 0th-order, 1st-order, and 2nd-order corrections use scalar values, linear scaling functions, and
quadratic scaling functions, respectively, for each response function.

Reimplemented from Model.

8.51.2.2 bool force_rebuild () [protected]

evaluate whether a rebuild of the approximation should be forced based on changes in the inactive data

This function forces a rebuild of the approximation according to the approximation type, the refitInactive
setting, and whether any inactive data has changed since the last build.

8.51.3 Member Data Documentation

8.51.3.1 size_t approxBuilds [protected]

number of calls to build_approximation()

used as a flag to automatically build the approximation if one of the derived compute_response functions
is called prior to build_approximation().

8.51.3.2 bool autoCorrection [protected]

a flag which controls the use of apply_correction() in SurrLayeredModel and HierLayeredModel approxi-
mate response computations

the default is on (true) once compute_correction() has been called. However this should be overridden
when a new correction is desired, since compute_correction() no longer automatically backs out an old
correction.

8.51.3.3 String refitInactive [protected]

flag denoting a user setting for rebuilding the approximation when changes occur to the inactive variables
data.

A setting of "all" denotes that the approximation should be rebuilt every time the inactive variables change
(e.g., for each instance of {d} in OUU). A setting of "region" denotes that the approximation should be
rebuilt every time the bounded region for the inactive variables changes (e.g., for each new trust region on
{d} in OUU).

The documentation for this class was generated from the following files:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

246 DAKOTA Class Documentation

� LayeredModel.H
� LayeredModel.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.52 LeastSq Class Reference 247

8.52 LeastSq Class Reference

Base class for the nonlinear least squares branch of the iterator hierarchy.

Inheritance diagram for LeastSq::

LeastSq

Minimizer

Iterator

NL2SOLLeastSq NLSSOLLeastSq SNLLLeastSq

Protected Member Functions

� LeastSq ()

default constructor

� LeastSq (Model &model)

standard constructor

� � LeastSq ()

destructor

� void run_iterator ()

run the iterator

� void print_iterator_results (ostream &s) const
� virtual void minimize_residuals ()=0

Used within the least squares branch for minimizing the sum of squares residuals. Redefines the run_iterator
virtual function for the least squares branch.

Protected Attributes

� int numLeastSqTerms

number of least squares terms

8.52.1 Detailed Description

Base class for the nonlinear least squares branch of the iterator hierarchy.

The LeastSq class provides common data and functionality for NLSSOLLeastSq and SNLLLeastSq.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

248 DAKOTA Class Documentation

8.52.2 Constructor & Destructor Documentation

8.52.2.1 LeastSq (Model & model) [protected]

standard constructor

This constructor extracts the inherited data for the least squares branch and performs sanity checking on
gradient and constraint settings.

8.52.3 Member Function Documentation

8.52.3.1 void run_iterator () [inline, protected, virtual]

run the iterator

This function is the primary run function for the iterator class hierarchy. All derived classes need to redefine
it.

Reimplemented from Iterator.

8.52.3.2 void print_iterator_results (ostream & s) const [protected, virtual]

Redefines default iterator results printing to include optimization results (objective function and con-
straints).

Reimplemented from Iterator.

The documentation for this class was generated from the following files:

� DakotaLeastSq.H
� DakotaLeastSq.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.53 List Class Template Reference 249

8.53 List Class Template Reference

Template class for the Dakota bookkeeping list.

Public Member Functions

� List ()

Default constructor.

� List (const List � T � &a)

Copy constructor.

� � List ()

Destructor.

� template � class InputIter � List (InputIter first, InputIter last)

Range constructor (member template).

� List � T � & operator= (const List � T � &a)

assignment operator

� void print (ostream &s) const

Prints a List to an output stream.

� void read (MPIUnpackBuffer &s)

Reads a List from an MPIUnpackBuffer after an MPI receive.

� void print (MPIPackBuffer &s) const

Prints a List to a MPIPackBuffer prior to an MPI send.

� size_t entries () const

Returns the number of items that are currently in the list.

� T get ()

Removes and returns the first item in the list.

� T removeAt (size_t index)

Removes and returns the item at the specified index.

� bool remove (const T &a)

Removes the specified item from the list.

� void insert (const T &a)

Adds the item a to the end of the list.

� bool contains (const T &a) const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

250 DAKOTA Class Documentation

Returns TRUE if list contains object a, returns FALSE otherwise.

� bool find (bool(� testFun)(const T &, void �), void � d, T &k) const

Returns TRUE if the list contains an object which the user defined function finds and sets k to this object.

� size_t index (bool(� testFun)(const T &, void �), void � d) const

Returns the index of object which the user defined test function finds.

� void sort (bool(� sortFun)(const T &, const T &))

Sorts the list into an order based on the predefined sort function.

� size_t index (const T &a) const

Returns the index of the object.

� size_t count (const T &a) const

Returns the number of items in the list equal to object.

� T & operator[] (size_t i)

Returns the object at index i (can use as lvalue).

� const T & operator[] (size_t i) const

Returns the object at index i, const (can’t use as lvalue).

8.53.1 Detailed Description

template � class T � class Dakota::List � T �

Template class for the Dakota bookkeeping list.

The List is the common list class for Dakota. It inherits from either the RW list class or the STL list class.
Extends the base list class to add Dakota specific methods Builds upon the previously existing DakotaVal-
List class

8.53.2 Member Function Documentation

8.53.2.1 T get ()

Removes and returns the first item in the list.

Remove and return item from front of list. Returns the object pointed to by the list::begin() iterator. It
also deletes the first node by calling the list::pop_front() method. Note: get() is not the same as list::front()
since the latter would return the 1st item but would not delete it.

8.53.2.2 T removeAt (size_t index)

Removes and returns the item at the specified index.

Removes the item at the index specified. Uses the STL advance() function to step to the appropriate position
in the list and then calls the list::erase() method.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.53 List Class Template Reference 251

8.53.2.3 bool remove (const T & a)

Removes the specified item from the list.

Removes the first instance matching object a from the list (and therefore differs from the STL list::remove()
which removes all instances). Uses the STL find() algorithm to find the object and the list::erase() method
to perform the remove.

8.53.2.4 void insert (const T & a) [inline]

Adds the item a to the end of the list.

Insert item at the end of list, calls list::push_back() method which places the object at the end of the list.

8.53.2.5 bool contains (const T & a) const [inline]

Returns TRUE if list contains object a, returns FALSE otherwise.

Uses the STL find() algorithm to locate the first instance of object a. Returns true if an instance is found.

8.53.2.6 bool find (bool(� testFun)(const T &, void �), void � d, T & k) const

Returns TRUE if the list contains an object which the user defined function finds and sets k to this object.

Find the first item in the list which satisfies the test function. Sets k if the object is found.

8.53.2.7 size_t index (bool(� testFun)(const T &, void �), void � d) const

Returns the index of object which the user defined test function finds.

Returns the index of the first item in the list which satisfies the test function. Uses a single list traversal to
both locate the object and return its index (generic algorithms would require two loop traversals).

8.53.2.8 void sort (bool(� sortFun)(const T &, const T &)) [inline]

Sorts the list into an order based on the predefined sort function.

The sort method utilizes the SortCompare functor and the base class list::sort algorithm to sort a list based
on the incoming sorting function sortFun. Note that the functor-based sorting method of std::list is not
supported by all compilers (e.g., SOLARIS, TFLOP) due to use of member templates, but a function
pointer-based interface is available in some cases.

8.53.2.9 size_t index (const T & a) const

Returns the index of the object.

Returns the index of the first item in the list which matches the object a. Uses a single list traversal to both
locate the object and return its index (generic algorithms would require two loop traversals).

8.53.2.10 size_t count (const T & a) const [inline]

Returns the number of items in the list equal to object.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

252 DAKOTA Class Documentation

Uses the STL count() algorithm to return the number of occurences of the specified object.

8.53.2.11]

T & operator[] (size_t i)

Returns the object at index i (can use as lvalue).

Returns item at position i of the list by stepping through the list using forward or reverse STL iterators
(depending on which end of the list is closer to the desired item). Once the object is found, it returns the
value pointed to by the iterator.

This functionality is inefficient in 0- � len loop-based list traversals and is being replaced by iterator-based
list traversals in the main DAKOTA code. For isolated look-ups of a particular index, however, this ap-
proach is acceptable.

8.53.2.12]

const T & operator[] (size_t i) const

Returns the object at index i, const (can’t use as lvalue).

Returns const item at position i of the list by stepping through the list using forward or reverse STL iterators
(depending on which end of the list is closer to the desired item). Once the object is found it returns the
value pointed to by the iterator.

This functionality is inefficient in 0- � len loop-based list traversals and is being replaced by iterator-based
list traversals in the main DAKOTA code. For isolated look-ups of a particular index, however, this ap-
proach is acceptable.

The documentation for this class was generated from the following file:

� DakotaList.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.54 MARSSurf Class Reference 253

8.54 MARSSurf Class Reference

Derived approximation class for multivariate adaptive regression splines.

Inheritance diagram for MARSSurf::

MARSSurf

Approximation

Public Member Functions

� MARSSurf (const ProblemDescDB &problem_db, const size_t &num_acv)

constructor

� � MARSSurf ()

destructor

Protected Member Functions

� int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� void find_coefficients ()

calculate the data fit coefficients using the currentPoints list of SurrogateDataPoints

� Real get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

Private Attributes

� int � flags

variable type declarations (ordinal, excluded, categorical)

� Mars � marsObject

pointer to the Mars object (MARS wrapper provided as part of DDACE)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

254 DAKOTA Class Documentation

8.54.1 Detailed Description

Derived approximation class for multivariate adaptive regression splines.

The MARSSurf class provides a global approximation based on regression splines. It employs the C++
wrapper developed by the DDACE team for the Multivariate Adaptive Regression Splines (MARS) package
from Prof. Jerome Friedman of Stanford University Dept. of Statistics.

The documentation for this class was generated from the following files:

� MARSSurf.H
� MARSSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.55 Matrix Class Template Reference 255

8.55 Matrix Class Template Reference

Template class for the Dakota numerical matrix.

Inheritance diagram for Matrix::

Matrix

BaseVector< BaseVector< T > >

Public Member Functions

� Matrix (size_t num_rows=0, size_t num_cols=0)

Constructor, takes number of rows, and number of columns as arguments.

� � Matrix ()

Destructor.

� Matrix � T � & operator= (const T &ival)

Sets all elements in the matrix to ival.

� size_t num_rows () const

Returns the number of rows for the matrix.

� size_t num_columns () const

Returns the number of columns for the matrix.

� void reshape_2d (size_t num_rows, size_t num_cols)

Resizes the matrix to num_rows by num_cols.

� void print (ostream &s, bool rtn) const

Prints a Matrix to an output stream.

� void print_row_vector (ostream &s, size_t i, bool rtn) const

Prints a Matrix to an output stream.

� void read (MPIUnpackBuffer &s)

Reads a Matrix from an MPIUnpackBuffer after an MPI receive.

� void print (MPIPackBuffer &s) const

Prints a Matrix to a MPIPackBuffer prior to an MPI send.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

256 DAKOTA Class Documentation

8.55.1 Detailed Description

template � class T � class Dakota::Matrix � T �

Template class for the Dakota numerical matrix.

A matrix class template to provide 2D arrays of objects. The matrix is zero-based, rows: 0 to (numRows-1)
and cols: 0 to (numColumns-1). The class supports overloading of the subscript operator allowing it to
emulate a normal built-in 2D array type. Matrix relies on the BaseVector template class to manage any
differences between underlying DAKOTA_BASE_VECTOR implementations (RW, STL, etc.).

8.55.2 Member Function Documentation

8.55.2.1 Matrix � T � & operator= (const T & val) [inline]

Sets all elements in the matrix to ival.

calls base class operator=(ival)

The documentation for this class was generated from the following file:

� DakotaMatrix.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.56 MergedVarConstraints Class Reference 257

8.56 MergedVarConstraints Class Reference

Derived class within the VarConstraints hierarchy which employs the merged data view.

Inheritance diagram for MergedVarConstraints::

MergedVarConstraints

VarConstraints VariablesUtil

Public Member Functions

� MergedVarConstraints (const ProblemDescDB &problem_db)

constructor

� � MergedVarConstraints ()

destructor

� const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

� void continuous_lower_bounds (const RealVector &c_l_bnds)

set the active continuous variable lower bounds

� const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

� void continuous_upper_bounds (const RealVector &c_u_bnds)

set the active continuous variable upper bounds

� const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

� void discrete_lower_bounds (const IntVector &d_l_bnds)

set the active discrete variable lower bounds

� const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

� void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

� const RealVector & inactive_continuous_lower_bounds () const

return the inactive continuous lower bounds

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

258 DAKOTA Class Documentation

� void inactive_continuous_lower_bounds (const RealVector &i_c_l_bnds)

set the inactive continuous lower bounds

� const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds

� void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds

� RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

� RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

� IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

� IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

� void write (ostream &s) const

write a variable constraints object to an ostream

� void read (istream &s)

read a variable constraints object from an istream

Private Attributes

� RealVector mergedDesignLowerBnds

a design lower bounds array merging continuous and discrete domains (integer values promoted to reals)

� RealVector mergedDesignUpperBnds

a design upper bounds array merging continuous and discrete domains (integer values promoted to reals)

� RealVector uncertainDistLowerBnds

the uncertain distribution lower bounds array (no discrete uncertain to merge)

� RealVector uncertainDistUpperBnds

the uncertain distribution upper bounds array (no discrete uncertain to merge)

� RealVector mergedStateLowerBnds

a state lower bounds array merging continuous and discrete domains (integer values promoted to reals)

� RealVector mergedStateUpperBnds

a state upper bounds array merging continuous and discrete domains (integer values promoted to reals)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.56 MergedVarConstraints Class Reference 259

8.56.1 Detailed Description

Derived class within the VarConstraints hierarchy which employs the merged data view.

Derived variable constraints classes take different views of the design, uncertain, and state variable types
and the continuous and discrete domain types. The MergedVarConstraints derived class combines con-
tinuous and discrete domain types but separates design, uncertain, and state variable types. The result is
merged design bounds arrays (mergedDesignLowerBnds, mergedDesignUpperBnds), uncertain distribu-
tion bounds arrays (uncertainDistLowerBnds, uncertainDistUpperBnds), and merged state bounds arrays
(mergedStateLowerBnds, mergedStateUpperBnds). The branch and bound strategy uses this approach
(see Variables::get_variables(problem_db) for variables type selection; variables type is passed to the
VarConstraints constructor in Model).

8.56.2 Constructor & Destructor Documentation

8.56.2.1 MergedVarConstraints (const ProblemDescDB & problem_db)

constructor

Extract fundamental lower and upper bounds and merge continuous and discrete domains to create merged-
DesignLowerBnds, mergedDesignUpperBnds, mergedStateLowerBnds, and mergedStateUpperBnds using
utilities from VariablesUtil (uncertain distribution bounds do not require any merging).

The documentation for this class was generated from the following files:

� MergedVarConstraints.H
� MergedVarConstraints.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

260 DAKOTA Class Documentation

8.57 MergedVariables Class Reference

Derived class within the Variables hierarchy which employs the merged data view.

Inheritance diagram for MergedVariables::

MergedVariables

Variables VariablesUtil

Public Member Functions

� MergedVariables ()

default constructor

� MergedVariables (const ProblemDescDB &problem_db)

standard constructor

� � MergedVariables ()

destructor

� size_t tv () const

Returns total number of vars.

� size_t cv () const

Returns number of active continuous vars.

� size_t dv () const

Returns number of active discrete vars.

� const RealVector & continuous_variables () const

return the active continuous variables

� void continuous_variables (const RealVector &c_vars)

set the active continuous variables

� const IntVector & discrete_variables () const

return the active discrete variables

� void discrete_variables (const IntVector &d_vars)

set the active discrete variables

� const StringArray & continuous_variable_labels () const

return the active continuous variable labels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.57 MergedVariables Class Reference 261

� void continuous_variable_labels (const StringArray &cv_labels)

set the active continuous variable labels

� const StringArray & discrete_variable_labels () const

return the active discrete variable labels

� void discrete_variable_labels (const StringArray &dv_labels)

set the active discrete variable labels

� const RealVector & inactive_continuous_variables () const

return the inactive continuous variables

� void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables

� const StringArray & inactive_continuous_variable_labels () const

return the inactive continuous variable labels

� void inactive_continuous_variable_labels (const StringArray &i_c_v_labels)

set the inactive continuous variable labels

� size_t acv () const

returns total number of continuous vars

� size_t adv () const

returns total number of discrete vars

� RealVector all_continuous_variables () const

returns a single array with all continuous variables

� IntVector all_discrete_variables () const

returns a single array with all discrete variables

� StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

� StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

� StringArray all_variable_labels () const

returns a single array with all variable labels

� void read (istream &s)

read a variables object from an istream

� void write (ostream &s) const

write a variables object to an ostream

� void write_aprepro (ostream &s) const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

262 DAKOTA Class Documentation

write a variables object to an ostream in aprepro format

� void read_annotated (istream &s)

read a variables object in annotated format from an istream

� void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

� void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

� void read (BiStream &s)

read a variables object from the binary restart stream

� void write (BoStream &s) const

write a variables object to the binary restart stream

� void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

Private Member Functions

� void copy_rep (const Variables � vars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

� RealVector mergedDesignVars

a design variables array merging continuous and discrete domains (integer values promoted to reals)

� RealVector uncertainVars

the uncertain variables array (no discrete uncertain to merge)

� RealVector mergedStateVars

a state variables array merging continuous and discrete domains (integer values promoted to reals)

� StringArray mergedDesignLabels

a label array combining continuous design and discrete design labels

� StringArray uncertainLabels

the uncertain variables label array (no discrete uncertain to combine)

� StringArray mergedStateLabels

a label array combining continuous state and discrete state labels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.57 MergedVariables Class Reference 263

Friends

� bool operator== (const MergedVariables &vars1, const MergedVariables &vars2)

equality operator

8.57.1 Detailed Description

Derived class within the Variables hierarchy which employs the merged data view.

Derived variables classes take different views of the design, uncertain, and state variable types and the con-
tinuous and discrete domain types. The MergedVariables derived class combines continuous and discrete
domain types but separates design, uncertain, and state variable types. The result is a single continuous
array of design variables (mergedDesignVars), a single continuous array of uncertain variables (uncertain-
Vars), and a single continuous array of state variables (mergedStateVars). The branch and bound strategy
uses this approach (see Variables::get_variables(problem_db)).

8.57.2 Constructor & Destructor Documentation

8.57.2.1 MergedVariables (const ProblemDescDB & problem_db)

standard constructor

Extract fundamental variable types and labels and merge continuous and discrete domains to create
mergedDesignVars, mergedStateVars, mergedDesignLabels, and mergedStateLabels using utilities from
VariablesUtil (uncertain variables and labels do not require any merging).

The documentation for this class was generated from the following files:

� MergedVariables.H
� MergedVariables.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

264 DAKOTA Class Documentation

8.58 Minimizer Class Reference

Base class for the optimizer and least squares branches of the iterator hierarchy.

Inheritance diagram for Minimizer::

Minimizer

Iterator

LeastSq Optimizer

NL2SOLLeastSq

NLSSOLLeastSq

SNLLLeastSq

CONMINOptimizer

DOTOptimizer

JEGAOptimizer

NPSOLOptimizer

rSQPOptimizer

SGOPTOptimizer

SNLLOptimizer

Public Member Functions

� const Variables & iterator_variable_results () const

return the final iterator solution (variables)

� const Response & iterator_response_results () const

return the final iterator solution (response)

Protected Member Functions

� Minimizer ()

default constructor

� Minimizer (Model &model)

standard constructor

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.58 Minimizer Class Reference 265

� � Minimizer ()

destructor

Protected Attributes

� Real convergenceTol

optimizer/least squares convergence tolerance

� Real constraintTol

optimizer/least squares constraint tolerance

� size_t numNonlinearIneqConstraints

number of nonlinear inequality constraints

� RealVector nonlinearIneqLowerBnds

nonlinear inequality constraint lower bounds

� RealVector nonlinearIneqUpperBnds

nonlinear inequality constraint upper bounds

� Real bigRealBoundSize

cutoff value for inequality constraint and continuous variable bounds

� int bigIntBoundSize

cutoff value for discrete variable bounds

� size_t numNonlinearEqConstraints

number of nonlinear equality constraints

� RealVector nonlinearEqTargets

nonlinear equality constraint targets

� size_t numLinearIneqConstraints

number of linear inequality constraints

� RealMatrix linearIneqConstraintCoeffs

linear inequality constraint coefficients

� RealVector linearIneqLowerBnds

linear inequality constraint lower bounds

� RealVector linearIneqUpperBnds

linear inequality constraint upper bounds

� size_t numLinearEqConstraints

number of linear equality constraints

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

266 DAKOTA Class Documentation

� RealMatrix linearEqConstraintCoeffs

linear equality constraint coefficients

� RealVector linearEqTargets

linear equality constraint targets

� int numNonlinearConstraints

total number of nonlinear constraints

� int numLinearConstraints

total number of linear constraints

� int numConstraints

total number of linear and nonlinear constraints

� bool boundConstraintFlag

convenience flag for denoting the presence of user-specified bound constraints. Used for method selection
and error checking.

� bool speculativeFlag

flag for speculative gradient evaluations

� bool vendorNumericalGradFlag

convenience flag for gradType == numerical && methodSource == vendor

� Variables bestVariables

best variables found in solution

� Response bestResponses

best responses found in solution

8.58.1 Detailed Description

Base class for the optimizer and least squares branches of the iterator hierarchy.

The Minimizer class provides common data and functionality for Optimizer and LeastSq.

8.58.2 Constructor & Destructor Documentation

8.58.2.1 Minimizer (Model & model) [protected]

standard constructor

This constructor extracts inherited data for the optimizer and least squares branches and performs sanity
checking on constraint settings.

The documentation for this class was generated from the following files:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.58 Minimizer Class Reference 267

� DakotaMinimizer.H
� DakotaMinimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

268 DAKOTA Class Documentation

8.59 Model Class Reference

Base class for the model class hierarchy.

Inheritance diagram for Model::

Model

LayeredModel NestedModel SingleModel

HierLayeredModel SurrLayeredModel

Public Member Functions

� Model ()

default constructor

� Model (ProblemDescDB &problem_db)

standard constructor for envelope

� Model (const Model &model)

copy constructor

� virtual � Model ()

destructor

� Model operator= (const Model &model)

assignment operator

� virtual Model subordinate_model ()

return the sub-model in nested and layered models

� virtual Iterator subordinate_iterator ()

return the sub-iterator in nested and layered models

� virtual Interface & interface ()

return the single interface employed by each derived model class: SingleModel::userDefinedInterface,
SurrLayeredModel::approxInterface, HierLayeredModel::lowFidelityInterface, or
NestedModel::optionalInterface

� virtual void layering_bypass (bool bypass_flag)

deactivate/reactivate the approximations for any/all layered models contained within this model

� virtual void build_approximation ()

build the approximation in LayeredModels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 269

� virtual void update_approximation (const RealVector &x_star, const Response &response_star)

update the approximation in SurrLayeredModels with new data

� virtual const RealVectorArray & approximation_coefficients ()

retrieve the approximation coefficients from each Approximation within a SurrLayeredModel

� virtual void compute_correction (const Response &truth_response, const Response &approx_-
response, const RealVector &c_vars)

compute correction factors for use in LayeredModels

� virtual void auto_correction (bool correction_flag)

manages automatic application of correction factors in LayeredModels

� virtual bool auto_correction ()

return flag indicating use of automatic correction within this model’s responses

� virtual void apply_correction (Response &approx_response, const RealVector &c_vars, bool quiet_-
flag=false)

apply correction factors to approx_response (for use in LayeredModels)

� virtual void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in a model’s interface component, sub-model
component, or neither component (componentParallelMode = INTERFACE, SUBMODEL, or 0).

� virtual String local_eval_synchronization ()

return derived model synchronization setting

� virtual int local_eval_concurrency ()

return derived model asynchronous evaluation concurrency

� virtual void reset_communicators ()

reset communicator partition data for a model

� virtual void free_communicators ()

deallocate communicator partitions for a model

� virtual void serve ()

Service job requests received from the master. Completes when a termination message is received from
stop_servers().

� virtual void stop_servers ()

Executed by the master to terminate all server operations for a particular model when iteration on the
model is complete.

� virtual const IntList & synchronize_nowait_completions ()

Return completion id’s matching response list from synchronize_nowait.

� virtual bool derived_master_overload () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

270 DAKOTA Class Documentation

Return a flag indicating the combination of multiprocessor evaluations and a dedicated master iterator
scheduling. Used in synchronous compute_response functions to prevent the error of trying to run a multi-
processor job on the master.

� virtual int total_eval_counter () const

Return the total evaluation count from the interface.

� virtual int new_eval_counter () const

Return the new (non-duplicate) evaluation count from the interface.

� void compute_response ()

Compute the Response at currentVariables (default asv).

� void compute_response (const IntArray &asv)

Compute the Response at currentVariables (specified asv).

� void asynch_compute_response ()

Spawn an asynchronous job (or jobs) that computes the value of the Response at currentVariables (default
asv).

� void asynch_compute_response (const IntArray &asv)

Spawn an asynchronous job (or jobs) that computes the value of the Response at currentVariables (specified
asv).

� const ResponseArray & synchronize ()

Execute a blocking scheduling algorithm to collect the complete set of results from a group of asynchronous
evaluations.

� const ResponseList & synchronize_nowait ()

Execute a nonblocking scheduling algorithm to collect all available results from a group of asynchronous
evaluations.

� void init_communicators (const int &max_iterator_concurrency)

allocate communicator partitions for a model

� void init_serial ()

for cases where init_communicators() will not be called, modify some default settings to behave properly in
serial.

� void estimate_message_lengths ()

estimate messageLengths for a model

� size_t tv () const

return total number of vars

� size_t cv () const

return number of active continuous variables

� size_t dv () const

return number of active discrete variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 271

� size_t num_functions () const

return number of functions in currentResponse

� void active_variables (const Variables &vars)

set the active variables in currentVariables

� const RealVector & continuous_variables () const

return the active continuous variables from currentVariables

� void continuous_variables (const RealVector &c_vars)

set the active continuous variables in currentVariables

� const IntVector & discrete_variables () const

return the active discrete variables from currentVariables

� void discrete_variables (const IntVector &d_vars)

set the active discrete variables in currentVariables

� const RealVector & inactive_continuous_variables () const

return the inactive continuous variables in currentVariables

� void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables in currentVariables

� const IntVector & inactive_discrete_variables () const

return the inactive discrete variables in currentVariables

� void inactive_discrete_variables (const IntVector &i_d_vars)

set the inactive discrete variables in currentVariables

� const RealVector & normal_means () const

return the normal uncertain variable means

� void normal_means (const RealVector &n_means)

set the normal uncertain variable means

� const RealVector & normal_std_deviations () const

return the normal uncertain variable standard deviations

� void normal_std_deviations (const RealVector &n_std_devs)

set the normal uncertain variable standard deviations

� const RealVector & normal_dist_lower_bounds () const

return the normal uncertain variable distribution lower bounds

� void normal_dist_lower_bounds (const RealVector &n_dist_lower_bnds)

set the normal uncertain variable distribution lower bounds

� const RealVector & normal_dist_upper_bounds () const

return the normal uncertain variable distribution upper bounds

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

272 DAKOTA Class Documentation

� void normal_dist_upper_bounds (const RealVector &n_dist_upper_bnds)

set the normal uncertain variable distribution upper bounds

� const RealVector & lognormal_means () const

return the lognormal uncertain variable means

� void lognormal_means (const RealVector &ln_means)

set the lognormal uncertain variable means

� const RealVector & lognormal_std_deviations () const

return the lognormal uncertain variable standard deviations

� void lognormal_std_deviations (const RealVector &ln_std_devs)

set the lognormal uncertain variable standard deviations

� const RealVector & lognormal_error_factors () const

return the lognormal uncertain variable error factors

� void lognormal_error_factors (const RealVector &ln_err_facts)

set the lognormal uncertain variable error factors

� const RealVector & lognormal_dist_lower_bounds () const

return the lognormal uncertain variable distribution lower bounds

� void lognormal_dist_lower_bounds (const RealVector &ln_dist_lower_bnds)

set the lognormal uncertain variable distribution lower bounds

� const RealVector & lognormal_dist_upper_bounds () const

return the lognormal uncertain variable distribution upper bounds

� void lognormal_dist_upper_bounds (const RealVector &ln_dist_upper_bnds)

set the lognormal uncertain variable distribution upper bounds

� const RealVector & uniform_dist_lower_bounds () const

return the uniform uncertain variable distribution lower bounds

� void uniform_dist_lower_bounds (const RealVector &u_dist_lower_bnds)

set the uniform uncertain variable distribution lower bounds

� const RealVector & uniform_dist_upper_bounds () const

return the uniform uncertain variable distribution upper bounds

� void uniform_dist_upper_bounds (const RealVector &u_dist_upper_bnds)

set the uniform uncertain variable distribution upper bounds

� const RealVector & loguniform_dist_lower_bounds () const

return the loguniform uncertain variable distribution lower bounds

� void loguniform_dist_lower_bounds (const RealVector &lu_dist_lower_bnds)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 273

set the loguniform uncertain variable distribution lower bounds

� const RealVector & loguniform_dist_upper_bounds () const

return the loguniform uncertain variable distribution upper bounds

� void loguniform_dist_upper_bounds (const RealVector &lu_dist_upper_bnds)

set the loguniform uncertain variable distribution upper bounds

� const RealVector & weibull_alphas () const

return the weibull uncertain variable alpha parameters

� void weibull_alphas (const RealVector &alphas)

set the weibull uncertain variable alpha parameters

� const RealVector & weibull_betas () const

return the weibull uncertain variable beta parameters

� void weibull_betas (const RealVector &betas)

set the weibull uncertain variable beta parameters

� const RealVector & weibull_dist_lower_bounds () const

return the weibull uncertain variable distribution lower bounds

� void weibull_dist_lower_bounds (const RealVector &w_dist_lower_bnds)

set the weibull uncertain variable distribution lower bounds

� const RealVector & weibull_dist_upper_bounds () const

return the weibull uncertain variable distribution upper bounds

� void weibull_dist_upper_bounds (const RealVector &w_dist_upper_bnds)

set the weibull uncertain variable distribution upper bounds

� const RealVectorArray & histogram_bin_pairs () const

return the histogram uncertain bin pairs

� void histogram_bin_pairs (const RealVectorArray &h_bin_pairs)

set the histogram uncertain bin pairs

� const RealVectorArray & histogram_point_pairs () const

return the histogram uncertain point pairs

� void histogram_point_pairs (const RealVectorArray &h_pt_pairs)

set the histogram uncertain point pairs

� const StringArray & continuous_variable_types () const

return the active continuous variable types from currentVariables

� const StringArray & discrete_variable_types () const

return the active discrete variable types from currentVariables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

274 DAKOTA Class Documentation

� const StringArray & continuous_variable_labels () const

return the active continuous variable labels from currentVariables

� void continuous_variable_labels (const StringArray &c_v_labels)

set the active continuous variable labels in currentVariables

� const StringArray & discrete_variable_labels () const

return the active discrete variable labels from currentVariables

� void discrete_variable_labels (const StringArray &d_v_labels)

set the active discrete variable labels in currentVariables

� const StringArray & inactive_continuous_variable_labels () const

return the inactive continuous variable labels in currentVariables

� void inactive_continuous_variable_labels (const StringArray &i_c_v_labels)

set the inactive continuous variable labels in currentVariables

� const StringArray & inactive_discrete_variable_labels () const

return the inactive discrete variable labels in currentVariables

� void inactive_discrete_variable_labels (const StringArray &i_d_v_labels)

set the inactive discrete variable labels in currentVariables

� const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds from userDefinedVarConstraints

� void continuous_lower_bounds (const RealVector &c_l_bnds)

set the active continuous variable lower bounds in userDefinedVarConstraints

� const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds from userDefinedVarConstraints

� void continuous_upper_bounds (const RealVector &c_u_bnds)

set the active continuous variable upper bounds in userDefinedVarConstraints

� const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds from userDefinedVarConstraints

� void discrete_lower_bounds (const IntVector &d_l_bnds)

set the active discrete variable lower bounds in userDefinedVarConstraints

� const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds from userDefinedVarConstraints

� void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds in userDefinedVarConstraints

� const RealVector & inactive_continuous_lower_bounds () const

return the inactive continuous lower bounds in userDefinedVarConstraints

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 275

� void inactive_continuous_lower_bounds (const RealVector &i_c_l_bnds)

set the inactive continuous lower bounds in userDefinedVarConstraints

� const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds in userDefinedVarConstraints

� void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds in userDefinedVarConstraints

� const IntVector & inactive_discrete_lower_bounds () const

return the inactive discrete lower bounds in userDefinedVarConstraints

� void inactive_discrete_lower_bounds (const IntVector &i_d_l_bnds)

set the inactive discrete lower bounds in userDefinedVarConstraints

� const IntVector & inactive_discrete_upper_bounds () const

return the inactive discrete upper bounds in userDefinedVarConstraints

� void inactive_discrete_upper_bounds (const IntVector &i_d_u_bnds)

set the inactive discrete upper bounds in userDefinedVarConstraints

� size_t num_linear_ineq_constraints () const

return the number of linear inequality constraints

� size_t num_linear_eq_constraints () const

return the number of linear equality constraints

� const RealMatrix & linear_ineq_constraint_coeffs () const

return the linear inequality constraint coefficients

� const RealVector & linear_ineq_constraint_lower_bounds () const

return the linear inequality constraint lower bounds

� const RealVector & linear_ineq_constraint_upper_bounds () const

return the linear inequality constraint upper bounds

� const RealMatrix & linear_eq_constraint_coeffs () const

return the linear equality constraint coefficients

� const RealVector & linear_eq_constraint_targets () const

return the linear equality constraint targets

� const IntList & merged_integer_list () const

return the list of discrete variables merged into a continuous array in currentVariables

� const IntArray & message_lengths () const

return the array of MPI packed message buffer lengths (messageLengths)

� const Variables & current_variables () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

276 DAKOTA Class Documentation

return the current variables (currentVariables)

� const Response & current_response () const

return the current response (currentResponse)

� const ProblemDescDB & prob_desc_db () const

return the problem description database (probDescDB)

� const String & model_type () const

return the model type (modelType)

� bool asynch_flag () const

return the asynchronous evaluation flag (asynchEvalFlag)

� void asynch_flag (const bool flag)

set the asynchronous evaluation flag (asynchEvalFlag)

� void auto_graphics (const bool flag)

set modelAutoGraphicsFlag to activate posting of graphics data within compute_response/synchronize
functions (automatic graphics posting in the model as opposed to graphics posting at the strategy level).

� const String & gradient_method () const

return the gradient evaluation method (gradType)

� const String & hessian_method () const

return the Hessian evaluation method (hessType)

� const int & evaluation_capacity () const

return the evaluation capacity for use in iterator logic

� int derivative_concurrency () const

return the gradient concurrency for use in parallel configuration logic

� void parallel_configuration_iterator (const ParConfigLIter &pc_iter)

set modelPCIter

� const ParConfigLIter & parallel_configuration_iterator () const

return modelPCIter

� bool is_null () const

function to check modelRep (does this envelope contain a letter)

Protected Member Functions

� Model (BaseConstructor, ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

� virtual void derived_compute_response (const IntArray &asv)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 277

portion of compute_response() specific to derived model classes

� virtual void derived_asynch_compute_response (const IntArray &asv)

portion of asynch_compute_response() specific to derived model classes

� virtual const ResponseArray & derived_synchronize ()

portion of synchronize() specific to derived model classes

� virtual const ResponseList & derived_synchronize_nowait ()

portion of synchronize_nowait() specific to derived model classes

� virtual void derived_init_communicators (const int &max_iterator_concurrency)

portion of init_communicators() specific to derived model classes

� virtual void derived_init_serial ()

portion of init_serial() specific to derived model classes

Protected Attributes

� Variables currentVariables

the set of current variables used by the model for performing function evaluations

� size_t numGradVars

the number of active continuous variables (used in the finite difference routines)

� Response currentResponse

the set of current responses that holds the results of model function evaluations

� size_t numFns

the number of functions in currentResponse

� VarConstraints userDefinedVarConstraints

Explicit constraints on variables are maintained in the VarConstraints class hierarchy. Currently, this in-
cludes linear constraints and bounds, but could be extended in the future to include other explicit constraints
which (1) have their form specified by the user, and (2) are not catalogued in Response since their form and
coefficients are published to an iterator at startup.

� IntArray messageLengths

length of packed MPI buffers containing vars, vars/asv, response, and PRPair

� const ProblemDescDB & probDescDB

class member reference to the problem description database. This reference is a const copy of the incoming
problem_db non-const reference and is only used in Model::prob_desc_db() (it is not inherited).

� ParallelLibrary & parallelLib

class member reference to the parallel library

� ParConfigLIter modelPCIter

the ParallelConfiguration node used by this model instance

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

278 DAKOTA Class Documentation

� int componentParallelMode

the component parallelism mode: 0 (none), INTERFACE, or SUBMODEL

Private Member Functions

� Model � get_model (ProblemDescDB &problem_db)

Used by the envelope to instantiate the correct letter class.

� size_t estimate_derivatives (const IntArray &map_asv, const IntArray &fd_grad_asv, const IntArray
&fd_hess_asv, const IntArray &quasi_hess_asv, const IntArray &original_asv, const bool asynch_-
flag)

evaluate numerical gradients using finite differences. This routine is selected with "method_source dakota"
(the default method_source) in the numerical gradient specification.

� void synchronize_derivatives (const Variables &vars, const ResponseArray &fd_responses,
Response &new_response, const IntArray &fd_grad_asv, const IntArray &fd_hess_asv, const
IntArray &quasi_hess_asv, const IntArray &original_asv)

combine results from an array of finite difference response objects (fd_grad_responses) into a single re-
sponse (new_response)

� void update_response (const Variables &vars, Response &new_response, const IntArray &fd_grad_-
asv, const IntArray &fd_hess_asv, const IntArray &quasi_hess_asv, const IntArray &original_-
asv, Response &initial_map_response, const RealMatrix &new_fn_grads, const RealMatrixArray
&new_fn_hessians)

overlay results to update a response object

� void update_quasi_hessians (const Variables &vars, Response &new_response, const IntArray
&original_asv)

perform quasi-Newton Hessian updates

� void manage_asv (const IntArray &asv_in, IntArray &map_asv_out, IntArray &fd_grad_asv_out,
IntArray &fd_hess_asv_out, IntArray &quasi_hess_asv_out, bool &use_est_deriv)

Coordinates usage of estimate_derivatives() calls based on asv_in.

Private Attributes

� Model � modelRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing modelRep

� String modelType

type of model: single, nested, or layered

� bool asynchFDFlag

flags use of estimate_derivatives w/i asynch_compute_response

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 279

� bool asynchEvalFlag

flags asynch evaluations (local or distributed)

� int evaluationCapacity

capacity for concurrent evaluations supported by the Model

� bool modelAutoGraphicsFlag

flag for posting of graphics data within compute_response (automatic graphics posting in the model as
opposed to graphics posting at the strategy level)

� bool silentFlag

flag for really quiet (silent) model output

� bool quietFlag

flag for quiet model output

� VariablesList varsList

history of vars populated in asynch_compute_response() and used in synchronize().

� List � IntArray � asvList

if asynchFDFlag is set, transfers asv sets to synchronize

� BoolList initialMapList

transfers initial_map flag values from estimate_derivatives to synchronize_derivatives

� BoolList dbCaptureList

transfers db_capture flag values from estimate_derivatives to synchronize_derivatives

� ResponseList dbResponseList

transfers database captures from estimate_derivatives to synchronize_derivatives

� RealList deltaList

transfers deltas from estimate_derivatives to synchronize_derivatives

� SizetList numMapsList

tracks the number of maps used in estimate_derivatives(). Used in synchronize() as a key for combining
finite difference responses into numerical gradients.

� RealMatrix xPrev

previous parameter vectors used in computing s for quasi-Newton updates

� RealMatrix fnGradsPrev

previous gradient vectors used in computing y for quasi-Newton updates

� RealMatrixArray quasiHessians

quasi-Newton Hessian approximations

� SizetArray numQuasiUpdates

number of quasi-Newton Hessian updates applied

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

280 DAKOTA Class Documentation

� ResponseArray responseArray

used to return an array of responses for asynchronous evaluations. This array has the responses in final
concatenated form. The similar array in Interface contains the raw responses.

� ResponseList responseList

used to return a list of responses for asynchronous evaluations. This list has the responses in final concate-
nated form. The similar list in Interface contains the raw responses.

� String gradType

grad type: none,numerical,analytic,mixed

� String methodSrc

method source: dakota,vendor

� String intervalType

interval type: forward,central

� RealVector fdGradSS

relative step sizes for numerical gradients

� IntList gradIdAnalytic

analytic id’s for mixed gradients

� IntList gradIdNumerical

numerical id’s for mixed gradients

� String hessType

Hess type: none,numerical,quasi,analytic,mixed.

� String quasiHessType

quasi-Hessian type: bfgs, damped_bfgs, sr1

� RealVector fdHessByGradSS

relative step sizes for numerical Hessians estimated with 1st-order grad differences

� RealVector fdHessByFnSS

relative step sizes for numerical Hessians estimated with 2nd-order fn differences

� IntList hessIdAnalytic

analytic id’s for mixed Hessians

� IntList hessIdNumerical

numerical id’s for mixed Hessians

� IntList hessIdQuasi

quasi id’s for mixed Hessians

� RealVector normalMeans

normal uncertain variable means

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 281

� RealVector normalStdDevs

normal uncertain variable standard deviations

� RealVector normalDistLowerBnds

normal uncertain variable distribution lower bounds

� RealVector normalDistUpperBnds

normal uncertain variable distribution upper bounds

� RealVector lognormalMeans

lognormal uncertain variable means

� RealVector lognormalStdDevs

lognormal uncertain variable standard deviations

� RealVector lognormalErrFacts

lognormal uncertain variable error factors

� RealVector lognormalDistLowerBnds

lognormal uncertain variable distribution lower bounds

� RealVector lognormalDistUpperBnds

lognormal uncertain variable distribution upper bounds

� RealVector uniformDistLowerBnds

uniform uncertain variable distribution lower bounds

� RealVector uniformDistUpperBnds

uniform uncertain variable distribution upper bounds

� RealVector loguniformDistLowerBnds

loguniform uncertain variable distribution lower bounds

� RealVector loguniformDistUpperBnds

loguniform uncertain variable distribution upper bounds

� RealVector weibullAlphas

weibull uncertain variable alphas

� RealVector weibullBetas

weibull uncertain variable betas

� RealVector weibullDistLowerBnds

weibull uncertain variable distribution lower bounds

� RealVector weibullDistUpperBnds

weibull uncertain variable distribution upper bounds

� RealVectorArray histogramBinPairs

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

282 DAKOTA Class Documentation

histogram uncertain (x,y) bin pairs (continuous linear histogram)

� RealVectorArray histogramPointPairs

histogram uncertain (x,y) point pairs (discrete histogram)

8.59.1 Detailed Description

Base class for the model class hierarchy.

The Model class is the base class for one of the primary class hierarchies in DAKOTA. The model hierarchy
contains a set of variables, an interface, and a set of responses, and an iterator operates on the model to map
the variables into responses using the interface. For memory efficiency and enhanced polymorphism, the
model hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the
base class (Model) serves as the envelope and one of the derived classes (selected in Model::get_model())
serves as the letter.

8.59.2 Constructor & Destructor Documentation

8.59.2.1 Model ()

default constructor

The default constructor is used in vector � Model � instantiations and for initialization of Model objects
contained in Iterator and derived Strategy classes. modelRep is NULL in this case (a populated problem_-
db is needed to build a meaningful Model object). This makes it necessary to check for NULL in the copy
constructor, assignment operator, and destructor.

8.59.2.2 Model (ProblemDescDB & problem_db)

standard constructor for envelope

Used in model instantiations within strategy constructors. Envelope constructor only needs to extract
enough data to properly execute get_model, since Model(BaseConstructor, problem_db) builds the actual
base class data for the derived models.

8.59.2.3 Model (const Model & model)

copy constructor

Copy constructor manages sharing of modelRep and incrementing of referenceCount.

8.59.2.4 � Model () [virtual]

destructor

Destructor decrements referenceCount and only deletes modelRep when referenceCount reaches zero.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 283

8.59.2.5 Model (BaseConstructor, ProblemDescDB & problem_db) [protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor builds the base class data for all inherited models. get_model() instantiates a derived class
and the derived class selects this base class constructor in its initialization list (to avoid the recursion of the
base class constructor calling get_model() again). Since the letter IS the representation, its representation
pointer is set to NULL (an uninitialized pointer causes problems in � Model).

8.59.3 Member Function Documentation

8.59.3.1 Model operator= (const Model & model)

assignment operator

Assignment operator decrements referenceCount for old modelRep, assigns new modelRep, and incre-
ments referenceCount for new modelRep.

8.59.3.2 String local_eval_synchronization () [virtual]

return derived model synchronization setting

SingleModels and HierLayeredModels redefine this virtual function. A default value of "synchronous"
prevents asynch local operations for:

� NestedModels: a subIterator can support message passing parallelism, but not asynch local.

� SurrLayeredModels: while asynch evals on approximations will work due to some added bookkeep-
ing, avoiding them is preferable.

Reimplemented in HierLayeredModel, and SingleModel.

8.59.3.3 int local_eval_concurrency () [virtual]

return derived model asynchronous evaluation concurrency

SingleModels and HierLayeredModels redefine this virtual function.

Reimplemented in HierLayeredModel, and SingleModel.

8.59.3.4 void init_communicators (const int & max_iterator_concurrency)

allocate communicator partitions for a model

The init_communicators() and derived_init_communicators() functions are stuctured to avoid performing
the messageLengths estimation more than once. init_communicators() (not virtual) performs the estimation
and then forwards the results to derived_init_communicators (virtual) which uses the data in different
contexts.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

284 DAKOTA Class Documentation

8.59.3.5 void init_serial ()

for cases where init_communicators() will not be called, modify some default settings to behave properly
in serial.

The init_serial() and derived_init_serial() functions are stuctured to separate base class (common) opera-
tions from derived class (specialized) operations.

8.59.3.6 void estimate_message_lengths ()

estimate messageLengths for a model

This functionality has been pulled out of init_communicators() and defined separately so that it may be
used in those cases when messageLengths is needed but model.init_communicators() is not called, e.g., for
the master processor in the self-scheduling of a concurrent iterator strategy.

8.59.3.7 Model � get_model (ProblemDescDB & problem_db) [private]

Used by the envelope to instantiate the correct letter class.

Used only by the envelope constructor to initialize modelRep to the appropriate derived type, as given by
the modelType attribute.

8.59.3.8 size_t estimate_derivatives (const IntArray & map_asv, const IntArray & fd_grad_asv,
const IntArray & fd_hess_asv, const IntArray & quasi_hess_asv, const IntArray &
original_asv, const bool asynch_flag) [private]

evaluate numerical gradients using finite differences. This routine is selected with "method_source dakota"
(the default method_source) in the numerical gradient specification.

Estimate derivatives by computing finite difference gradients, finite difference Hessians, and/or quasi-
Newton Hessians. The total number of finite difference evaluations is returned for use by synchronize() to
track response arrays, and it could be used to improve management of max_function_evaluations within
the iterators.

8.59.3.9 void synchronize_derivatives (const Variables & vars, const ResponseArray &
fd_responses, Response & new_response, const IntArray & fd_grad_asv, const IntArray
& fd_hess_asv, const IntArray & quasi_hess_asv, const IntArray & original_asv)
[private]

combine results from an array of finite difference response objects (fd_grad_responses) into a single re-
sponse (new_response)

Merge an array of fd_responses into a single new_response. This function is used both by synchronous
compute_response() for the case of asynchronous estimate_derivatives() and by synchronize() for the case
where one or more asynch_compute_response() calls has employed asynchronous estimate_derivatives().

8.59.3.10 void update_response (const Variables & vars, Response & new_response, const IntArray
& fd_grad_asv, const IntArray & fd_hess_asv, const IntArray & quasi_hess_asv, const
IntArray & original_asv, Response & initial_map_response, const RealMatrix &
new_fn_grads, const RealMatrixArray & new_fn_hessians) [private]

overlay results to update a response object

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.59 Model Class Reference 285

Overlay the initial_map_response with numerically estimated new_fn_grads and new_fn_hessians to pop-
ulate new_response as governed by asv vectors. Quasi-Newton secant Hessian updates are also performed
here, since this is where the gradient data needed for the updates is first consolidated. Convenience func-
tion used by estimate_derivatives() for the synchronous case and by synchronize_derivatives() for the asyn-
chronous case.

8.59.3.11 void manage_asv (const IntArray & asv_in, IntArray & map_asv_out, IntArray &
fd_grad_asv_out, IntArray & fd_hess_asv_out, IntArray & quasi_hess_asv_out, bool &
use_est_deriv) [private]

Coordinates usage of estimate_derivatives() calls based on asv_in.

Splits asv_in total request into map_asv_out, fd_grad_asv_out, fd_hess_asv_out, and quasi_hess_asv_out
as governed by the responses specification. If use_est_deriv is set, then these asv outputs are used by
estimate_derivatives() for the initial map, finite difference gradient evals, finite difference Hessian evals,
and quasi-Hessian updates, respectively. If use_est_deriv is not set, then only map_asv_out is used.

The documentation for this class was generated from the following files:

� DakotaModel.H
� DakotaModel.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

286 DAKOTA Class Documentation

8.60 MPIPackBuffer Class Reference

Class for packing MPI message buffers.

Public Member Functions

� MPIPackBuffer (int size_=1024)

Constructor, which allows the default buffer size to be set.

� � MPIPackBuffer ()

Desctructor.

� const char � buf ()

Returns a pointer to the internal buffer that has been packed.

� int size ()

The number of bytes of packed data.

� int capacity ()

the allocated size of Buffer.

� void reset ()

Resets the buffer index in order to reuse the internal buffer.

� void pack (const int � data, const int num=1)

Pack one or more int’s.

� void pack (const u_int � data, const int num=1)

Pack one or more unsigned int’s.

� void pack (const long � data, const int num=1)

Pack one or more long’s.

� void pack (const u_long � data, const int num=1)

Pack one or more unsigned long’s.

� void pack (const short � data, const int num=1)

Pack one or more short’s.

� void pack (const u_short � data, const int num=1)

Pack one or more unsigned short’s.

� void pack (const char � data, const int num=1)

Pack one or more char’s.

� void pack (const u_char � data, const int num=1)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.60 MPIPackBuffer Class Reference 287

Pack one or more unsigned char’s.

� void pack (const double � data, const int num=1)

Pack one or more double’s.

� void pack (const float � data, const int num=1)

Pack one or more float’s.

� void pack (const bool � data, const int num=1)

Pack one or more bool’s.

� void pack (const int &data)

Pack a int.

� void pack (const u_int &data)

Pack a unsigned int.

� void pack (const long &data)

Pack a long.

� void pack (const u_long &data)

Pack a unsigned long.

� void pack (const short &data)

Pack a short.

� void pack (const u_short &data)

Pack a unsigned short.

� void pack (const char &data)

Pack a char.

� void pack (const u_char &data)

Pack a unsigned char.

� void pack (const double &data)

Pack a double.

� void pack (const float &data)

Pack a float.

� void pack (const bool &data)

Pack a bool.

Protected Member Functions

� void resize (const int newsize)

Resizes the internal buffer.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

288 DAKOTA Class Documentation

Protected Attributes

� char � Buffer

The internal buffer for packing.

� int Index

The index into the current buffer.

� int Size

The total size that has been allocated for the buffer.

8.60.1 Detailed Description

Class for packing MPI message buffers.

A class that provides a facility for packing message buffers using the MPI_Pack facility. The
MPIPackBuffer class dynamically resizes the internal buffer to contain enough memory to pack the
entire object. When deleted, the MPIPackBuffer object deletes this internal buffer. This class is based
on the Dakota_Version_3_0 version of utilib::PackBuffer from utilib/src/io/PackBuf.[cpp,h]

The documentation for this class was generated from the following files:

� MPIPackBuffer.H
� MPIPackBuffer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.61 MPIUnpackBuffer Class Reference 289

8.61 MPIUnpackBuffer Class Reference

Class for unpacking MPI message buffers.

Public Member Functions

� void setup (char � buf_, int size_, bool flag_=false)

Method that does the setup for the constructors.

� MPIUnpackBuffer ()

Default constructor.

� MPIUnpackBuffer (int size_)

Constructor that specifies the size of the buffer.

� MPIUnpackBuffer (char � buf_, int size_, bool flag_=false)

Constructor that sets the internal buffer to the given array.

� � MPIUnpackBuffer ()

Destructor.

� void resize (const int newsize)

Resizes the internal buffer.

� const char � buf ()

Returns a pointer to the internal buffer.

� int size ()

Returns the length of the buffer.

� int curr ()

Returns the number of bytes that have been unpacked from the buffer.

� void reset ()

Resets the index of the internal buffer.

� void unpack (int � data, const int num=1)

Unpack one or more int’s.

� void unpack (u_int � data, const int num=1)

Unpack one or more unsigned int’s.

� void unpack (long � data, const int num=1)

Unpack one or more long’s.

� void unpack (u_long � data, const int num=1)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

290 DAKOTA Class Documentation

Unpack one or more unsigned long’s.

� void unpack (short � data, const int num=1)

Unpack one or more short’s.

� void unpack (u_short � data, const int num=1)

Unpack one or more unsigned short’s.

� void unpack (char � data, const int num=1)

Unpack one or more char’s.

� void unpack (u_char � data, const int num=1)

Unpack one or more unsigned char’s.

� void unpack (double � data, const int num=1)

Unpack one or more double’s.

� void unpack (float � data, const int num=1)

Unpack one or more float’s.

� void unpack (bool � data, const int num=1)

Unpack one or more bool’s.

� void unpack (int &data)

Unpack a int.

� void unpack (u_int &data)

Unpack a unsigned int.

� void unpack (long &data)

Unpack a long.

� void unpack (u_long &data)

Unpack a unsigned long.

� void unpack (short &data)

Unpack a short.

� void unpack (u_short &data)

Unpack a unsigned short.

� void unpack (char &data)

Unpack a char.

� void unpack (u_char &data)

Unpack a unsigned char.

� void unpack (double &data)

Unpack a double.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.61 MPIUnpackBuffer Class Reference 291

� void unpack (float &data)

Unpack a float.

� void unpack (bool &data)

Unpack a bool.

Protected Attributes

� char � Buffer

The internal buffer for unpacking.

� int Index

The index into the current buffer.

� int Size

The total size that has been allocated for the buffer.

� bool ownFlag

If TRUE, then this class owns the internal buffer.

8.61.1 Detailed Description

Class for unpacking MPI message buffers.

A class that provides a facility for unpacking message buffers using the MPI_Unpack facility. This class is
based on the Dakota_Version_3_0 version of utilib::UnPackBuffer from utilib/src/io/PackBuf.[cpp,h]

The documentation for this class was generated from the following files:

� MPIPackBuffer.H
� MPIPackBuffer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

292 DAKOTA Class Documentation

8.62 MultilevelOptStrategy Class Reference

Strategy for hybrid optimization using multiple optimizers on multiple models of varying fidelity.

Inheritance diagram for MultilevelOptStrategy::

MultilevelOptStrategy

Strategy

Public Member Functions

� MultilevelOptStrategy (ProblemDescDB &problem_db)

constructor

� � MultilevelOptStrategy ()

destructor

� void run_strategy ()

Performs the hybrid optimization strategy by executing multiple iterators on different models of varying
fidelity.

� const Variables & strategy_variable_results () const

return the final solution from selectedIterators (variables)

� const Response & strategy_response_results () const

return the final solution from selectedIterators (response)

� IteratorList & iterators (bool recurse_flag=true)

returns selectedIterators and any subordinate iterators

� ModelList & models (bool recurse_flag=true)

returns userDefinedModels and any subordinate models

Private Member Functions

� void run_coupled ()

run a tightly coupled hybrid

� void run_uncoupled ()

run an uncoupled hybrid

� void run_uncoupled_adaptive ()

run an uncoupled adaptive hybrid

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.62 MultilevelOptStrategy Class Reference 293

Private Attributes

� String multiLevelType

coupled, uncoupled, or uncoupled_adaptive

� StringArray methodList

the list of method identifiers

� int numIterators

number of methods in methodList

� Real localSearchProb

the probability of running a local search refinement within phases of the global optimization for coupled
hybrids

� Real progressMetric

the amount of progress made in a single iterator++ cycle within an uncoupled adaptive hybrid

� Real progressThreshold

when the progress metric falls below this threshold, the uncoupled adaptive hybrid switches to the next
method

� IteratorArray selectedIterators

the set of iterators, one for each entry in methodList

� ModelArray userDefinedModels

the set of models, one for each iterator

8.62.1 Detailed Description

Strategy for hybrid optimization using multiple optimizers on multiple models of varying fidelity.

This strategy has three approaches to hybrid optimization: (1) the uncoupled hybrid runs one method to
completion, passes its best results as the starting point for a subsequent method, and continues this succes-
sion until all methods have been executed; (2) the uncoupled adaptive hybrid is similar to the uncoupled
hybrid, except that the stopping rules for the optimizers are controlled adapatively by the strategy instead
of internally by each optimizer; and (3) the coupled hybrid uses multiple methods in close coordination,
generally using a local search optimizer repeatedly within a global optimizer (the local search optimizer
refines candidate optima which are fed back to the global optimizer). The uncoupled strategies only pass
information forward, whereas the coupled strategy allows both feed forward and feedback. Note that while
the strategy is targeted at optimizers, any iterator may be used so long as it defines the notion of a final
solution which can be passed as the starting point for subsequent iterators.

8.62.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

294 DAKOTA Class Documentation

8.62.2.1 void run_coupled () [private]

run a tightly coupled hybrid

In the coupled case, use is made of external hybridization capabilities, such as those available in the
global/local hybrids from SGOPT. This function is responsible only for publishing the local optimizer
selection to the global optimizer and then invoking the global optimizer; the logic of method switching is
handled entirely within the global optimizer. Status: incomplete.

8.62.2.2 void run_uncoupled () [private]

run an uncoupled hybrid

In the uncoupled nonadaptive case, there is no interference with the iterators. Each runs until its own
convergence criteria is satisfied (using iterator.run_iterator()). Status: fully operational.

8.62.2.3 void run_uncoupled_adaptive () [private]

run an uncoupled adaptive hybrid

In the uncoupled adaptive case, there is interference with the iterators through the use of the ++ overloaded
operator. iterator++ runs the iterator for one cycle, after which a progress_metric is computed. This
progress metric is used to dictate method switching instead of each iterator’s internal convergence criteria.
Status: incomplete.

The documentation for this class was generated from the following files:

� MultilevelOptStrategy.H
� MultilevelOptStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.63 NestedModel Class Reference 295

8.63 NestedModel Class Reference

Derived model class which performs a complete sub-iterator execution within every evaluation of the
model.

Inheritance diagram for NestedModel::

NestedModel

Model

Public Member Functions

� NestedModel (ProblemDescDB &problem_db)

constructor

� � NestedModel ()

destructor

Protected Member Functions

� void derived_compute_response (const IntArray &asv)

portion of compute_response() specific to NestedModel

� void derived_asynch_compute_response (const IntArray &asv)

portion of asynch_compute_response() specific to NestedModel

� const ResponseArray & derived_synchronize ()

portion of synchronize() specific to NestedModel

� const ResponseList & derived_synchronize_nowait ()

portion of synchronize_nowait() specific to NestedModel

� const IntList & synchronize_nowait_completions ()

Return completion id’s matching response list from synchronize_nowait.

� Model subordinate_model ()

return subModel

� Iterator subordinate_iterator ()

return subIterator

� Interface & interface ()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

296 DAKOTA Class Documentation

return optionalInterface

� void layering_bypass (bool bypass_flag)

NestedModels have nothing to bypass, but must pass request on to the subModel for any lower-level layer-
ings.

� void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in optionalInterface and subModel

� bool derived_master_overload () const

flag which prevents overloading the master with a multiprocessor evaluation (forwarded to optional-
Interface)

� void derived_init_communicators (const int &max_iterator_concurrency)

set up optionalInterface and subModel for parallel operations

� void derived_init_serial ()

set up optionalInterface and subModel for serial operations.

� void reset_communicators ()

reset communicator partitions for the NestedModel (forwarded to optionalInterface and subModel)

� void free_communicators ()

deallocate communicator partitions for the NestedModel (forwarded to optionalInterface and subModel)

� void serve ()

Service optionalInterface and subModel job requests received from the master. Completes when a termina-
tion message is received from stop_servers().

� void stop_servers ()

Executed by the master to terminate server operations for subModel and optionalInterface when iteration
on the NestedModel is complete.

� int total_eval_counter () const

Return the total evaluation count for the NestedModel.

� int new_eval_counter () const

Return the new evaluation count for the NestedModel.

Private Member Functions

� void asv_mapping (const IntArray &mapped_asv, IntArray &interface_asv, IntArray &sub_-
iterator_asv)

define the evaluation requirements for the optionalInterface (interface_asv) and the subIterator (sub_-
iterator_asv) from the total model evaluation requirements (mapped_asv)

� void response_mapping (const Response &interface_response, const Response &sub_iterator_-
response, Response &mapped_response)

combine the response from the optional interface evaluation with the response from the sub-iteration using
the objLSqCoeffs/constrCoeffs mappings to create the total response for the model

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.63 NestedModel Class Reference 297

� void update_sub_model ()

update subModel with current variable values/bounds/labels

Private Attributes

� int nestedEvals

number of calls to derived_compute_response()

� Iterator subIterator

the sub-iterator that is executed on every evaluation of this model

� Model subModel

the sub-model used in sub-iterator evaluations

� size_t numSubIterFns

number of sub-iterator response functions prior to mapping

� size_t numSubIterMappedIneqCon

number of top-level inequality constraints mapped from the sub-iteration results

� size_t numSubIterMappedEqCon

number of top-level equality constraints mapped from the sub-iteration results

� Interface optionalInterface

the optional interface contributes nonnested response data to the total model response

� String interfacePointer

the optional interface pointer from the nested model specification

� Response interfaceResponse

the response object resulting from optional interface evaluations

� size_t numInterfObjLSq

number of objective functions/least squares terms resulting from optional interface evaluations

� size_t numInterfIneqCon

number of inequality constraints resulting from optional interface evaluations

� size_t numInterfEqCon

number of equality constraints resulting from the optional interface evaluations

� IntArray primaryCVarMapIndices

"primary" variable mappings for inserting active continuous currentVariables into active continuous sub-
Model variables. If there are no secondary mappings defined, then the insertions replace the subModel
variable values.

� IntArray primaryDVarMapIndices

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

298 DAKOTA Class Documentation

"primary" variable mappings for inserting active discrete currentVariables into active discrete subModel
variables. No secondary mappings are defined for discrete variables, so the insertions replace the subModel
variable values.

� IntArray secondaryVarMapIndices

"secondary" variable mappings for inserting active continuous currentVariables into sub-parameters (e.g.,
distribution parameters for uncertain variables) of the active continuous subModel variables.

� RealMatrix objLSqCoeffs

"primary" response_mapping matrix applied to the sub-iterator response functions. For OUU, the matrix is
applied to UQ statistics to create contributions to the top-level objective functions/least squares terms.

� RealMatrix constrCoeffs

"secondary" response_mapping matrix applied to the sub-iterator response functions. For OUU, the matrix
is applied to UQ statistics to create contributions to the top-level inequality and equality constraints.

� ResponseArray responseArray

dummy response array for derived_synchronize() prior to derived_asynch_compute_response() support

� ResponseList responseList

dummy response list for derived_synchronize_nowait() prior to derived_asynch_compute_response() sup-
port

� IntList completionList

dummy completion list for synchronize_nowait_completions() prior to derived_asynch_compute_response()
support

8.63.1 Detailed Description

Derived model class which performs a complete sub-iterator execution within every evaluation of the
model.

The NestedModel class nests a sub-iterator execution within every model evaluation. This capability is
most commonly used for optimization under uncertainty, in which a nondeterministic iterator is executed on
every optimization function evaluation. The NestedModel also contains an optional interface, for portions
of the model evaluation which are independent from the sub-iterator, and a set of mappings for combining
sub-iterator and optional interface data into a top level response for the model.

8.63.2 Member Function Documentation

8.63.2.1 void derived_compute_response (const IntArray & asv) [protected, virtual]

portion of compute_response() specific to NestedModel

Update subModel’s inactive variables with active variables from currentVariables, compute the optional
interface and sub-iterator responses, and map these to the total model response.

Reimplemented from Model.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.63 NestedModel Class Reference 299

8.63.2.2 void derived_asynch_compute_response (const IntArray & asv) [protected,
virtual]

portion of asynch_compute_response() specific to NestedModel

Not currently supported by NestedModels (need to add concurrent iterator support). As a result,
derived_synchronize(), derived_synchronize_nowait(), and synchronize_nowait_completions() are inactive
as well).

Reimplemented from Model.

8.63.2.3 const ResponseArray & derived_synchronize () [protected, virtual]

portion of synchronize() specific to NestedModel

Asynchronous response computations are not currently supported by NestedModels. Return a dummy
responseArray to satisfy the compiler.

Reimplemented from Model.

8.63.2.4 const ResponseList & derived_synchronize_nowait () [protected, virtual]

portion of synchronize_nowait() specific to NestedModel

Asynchronous response computations are not currently supported by NestedModels. Return a dummy
responseList to satisfy the compiler.

Reimplemented from Model.

8.63.2.5 const IntList & synchronize_nowait_completions () [inline, protected,
virtual]

Return completion id’s matching response list from synchronize_nowait.

Asynchronous response computations are not currently supported by NestedModels. Return a dummy
completionList to satisfy the compiler.

Reimplemented from Model.

8.63.2.6 bool derived_master_overload () const [inline, protected, virtual]

flag which prevents overloading the master with a multiprocessor evaluation (forwarded to optional-
Interface)

Derived master overload for subModel is handled separately in subModel.compute_response() within sub-
Iterator.run_iterator().

Reimplemented from Model.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

300 DAKOTA Class Documentation

8.63.2.7 void derived_init_communicators (const int & max_iterator_concurrency) [inline,
protected, virtual]

set up optionalInterface and subModel for parallel operations

Asynchronous flags need to be initialized for the subModel. In addition, max_iterator_concurrency is the
outer level iterator concurrency, not the subIterator concurrency that subModel will see, and recomputing
the message_lengths on the subModel is probably not a bad idea either. Therefore, recompute everything
on subModel using init_communicators().

Reimplemented from Model.

8.63.2.8 void response_mapping (const Response & interface_response, const Response &
sub_iterator_response, Response & mapped_response) [private]

combine the response from the optional interface evaluation with the response from the sub-iteration using
the objLSqCoeffs/constrCoeffs mappings to create the total response for the model

In the OUU case,

optionalInterface fns = {f}, {g} (deterministic obj fns/lsq terms & constraints)
subIterator fns = {S} (UQ response statistics)

Problem formulation for mapped functions:
minimize {f} + [W]{S}
subject to {g_l} <= {g} <= {g_u}

{a_l} <= [A]{S} <= {a_u}
{g} == {g_t}
[A]{S} == {a_t}

where [W] is the primary_mapping_matrixuser input (objLSqCoeffs class attribute), [A] is the secondary_-
mapping_matrix user input (constrCoeffs class attribute), {{g_l},{a_l}} are the top level inequality con-
straint lower bounds, {{g_u},{a_u}} are the top level inequality constraint upper bounds, and {{g_t},{a_-
t}} are the top level equality constraint targets.

NOTE: optionalInterface/subIterator primary fns (obj fns/lsq terms) overlap but optionalInterface/sub-
Iterator secondary fns (ineq/eq constraints) do not. The [W] matrix can be specified so as to allow

� some purely deterministic primary functions and some combined: [W] filled and [W].num_rows()
� {f}.length() [combined first] or [W].num_rows() == {f}.length() and [W] contains rows of zeros
[combined last]

� some combined and some purely stochastic primary functions: [W] filled and [W].num_rows() �
{f}.length()

� separate deterministic and stochastic primary functions: [W].num_rows() � {f}.length() and [W]
contains {f}.length() rows of zeros.

If the need arises, could change constraint definition to allow overlap as well: {g_l} � = {g} + [A]{S} � =
{g_u} with [A] usage the same as for [W] above.

In the UOO case, things are simpler, just compute statistics of each optimization response function: [W] =
[I], {f}/{g}/[A] are empty.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.63 NestedModel Class Reference 301

8.63.3 Member Data Documentation

8.63.3.1 Model subModel [private]

the sub-model used in sub-iterator evaluations

There are no restrictions on subModel, so arbitrary nestings are possible. This is commonly used to support
surrogate-based optimization under uncertainty by having NestedModels contain LayeredModels and vice
versa.

The documentation for this class was generated from the following files:

� NestedModel.H
� NestedModel.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

302 DAKOTA Class Documentation

8.64 Nl2Misc Struct Reference

Auxiliary information passed to calcr and calcj via ur.

Public Attributes

� Model � m

Dakota "Model".

� Real � J [2]

cache the two most recent Jacobian values in speculative-evaluation mode

� int nf [2]

function-evaluation counts corresponding to cached Jacobian values (used to tell which J value to use)

� int specgrad

whether to cache J values (0 == no, 1 == yes)

8.64.1 Detailed Description

Auxiliary information passed to calcr and calcj via ur.

The documentation for this struct was generated from the following file:

� NL2SOLLeastSq.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.65 NL2SOLLeastSq Class Reference 303

8.65 NL2SOLLeastSq Class Reference

Wrapper class for the NL2SOL nonlinear least squares library.

Inheritance diagram for NL2SOLLeastSq::

NL2SOLLeastSq

LeastSq

Minimizer

Iterator

Public Member Functions

� NL2SOLLeastSq (Model &model)

standard constructor

� � NL2SOLLeastSq ()

destructor

� void minimize_residuals ()

Private Attributes

� int auxprt

auxilary printing bits (see Dakota Ref Manual): sum of 1 = x0prt (print initial guess) 2 = solprt (print final
solution) 4 = statpr (print solution statistics) 8 = parprt (print nondefault parameters) 16 = dradpr (print
bound constraint drops/adds) debug/verbose/normal use default = 31 (everything), quiet uses 3, silent uses
0.

� int outlev

frequency of output summary lines in number of iterations (debug/verbose/normal/quiet use default = 1,
silent uses 0)

� Real dltfdj

finite-diff step size for computing Jacobian approximation (fd_gradient_step_size)

� Real delta0

finite-diff step size for gradient differences for H (a component of some covariance approximations, if de-
sired) (fd_hessian_step_size)

� Real dltfdc

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

304 DAKOTA Class Documentation

finite-diff step size for function differences for H (fd_hessian_step_size)

� int mxfcal

function-evaluation limit (max_function_evaluations)

� int mxiter

iteration limit (max_iterations)

� Real rfctol

relative fn convergence tolerance (convergence_tolerance)

� Real afctol

absolute fn convergence tolerance (absolute_conv_tol)

� Real xctol

x-convergence tolerance (x_conv_tol)

� Real sctol

singular convergence tolerance (singular_conv_tol)

� Real lmaxs

radius for singular-convergence test (singular_radius)

� Real xftol

false-convergence tolerance (false_conv_tol)

� int covreq

kind of covariance required (covariance): 1 or -1 ==
�

sigma
�

2 H
�

-1 J
�

T J H
�

-1 2 or -2 ==
�

sigma
�

2 H
�

-1 3 or -3 ==
�

sigma
�

2 (J
�

T J)
�

-1 1 or 2 ==
�

use gradient diffs to estimate H -1 or -2 ==
�

use function diffs to estimate H default = 0 (no covariance)

� int rdreq

whether to compute the regression diagnostic vector (regression_diagnostics)

� Real fprec

expected response function precision (function_precision)

� Real lmax0

initial trust-region radius (initial_trust_radius)

8.65.1 Detailed Description

Wrapper class for the NL2SOL nonlinear least squares library.

The NL2SOLLeastSq class provides a wrapper for NL2SOL, a C library from Bell Labs. It uses a function
pointer approach for which passed functions must be either global functions or static member functions.

8.65.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.65 NL2SOLLeastSq Class Reference 305

8.65.2.1 void minimize_residuals () [virtual]

Details on the following subscript values appear in "Usage Summary for Selected Optimization Rou-
tines" by David M. Gay, Computing Science Technical Report No. 153, AT&T Bell Laboratories, 1990.
http://netlib.bell-labs.com/cm/cs/cstr/153.ps.gz

Implements LeastSq.

The documentation for this class was generated from the following files:

� NL2SOLLeastSq.H
� NL2SOLLeastSq.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

http://netlib.bell-labs.com/cm/cs/cstr/153.ps.gz

306 DAKOTA Class Documentation

8.66 NLSSOLLeastSq Class Reference

Wrapper class for the NLSSOL nonlinear least squares library.

Inheritance diagram for NLSSOLLeastSq::

NLSSOLLeastSq

LeastSq SOLBase

Minimizer

Iterator

Public Member Functions

� NLSSOLLeastSq (Model &model)

standard constructor

� � NLSSOLLeastSq ()

destructor

� void minimize_residuals ()

Used within the least squares branch for minimizing the sum of squares residuals. Redefines the run_iterator
virtual function for the least squares branch.

Static Private Member Functions

� void least_sq_eval (int &mode, int &m, int &n, int &nrowfj, double � x, double � f, double � gradf,
int &nstate)

Evaluator for NLSSOL: computes the values and first derivatives of the least squares terms (passed by
function pointer to NLSSOL).

Static Private Attributes

� NLSSOLLeastSq � nlssolInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for
static data

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.66 NLSSOLLeastSq Class Reference 307

8.66.1 Detailed Description

Wrapper class for the NLSSOL nonlinear least squares library.

The NLSSOLLeastSq class provides a wrapper for NLSSOL, a Fortran 77 sequential quadratic program-
ming library from Stanford University marketed by Stanford Business Associates. It uses a function pointer
approach for which passed functions must be either global functions or static member functions. Any non-
static attribute used within static member functions must be either local to that function or accessed through
a static pointer.

The user input mappings are as follows: max_function_evaluations is implemented directly
in NLSSOLLeastSq’s evaluator functions since there is no NLSSOL parameter equivalent, and max_-
iterations, convergence_tolerance, output verbosity, verify_level, function_-
precision, and linesearch_tolerance are mapped into NLSSOL’s "Major Iteration Limit", "Op-
timality Tolerance", "Major Print Level" (verbose: Major Print Level = 20; quiet: Major Print Level
= 10), "Verify Level", "Function Precision", and "Linesearch Tolerance" parameters, respectively, using
NLSSOL’s npoptn() subroutine (as wrapped by npoptn2() from the npoptn_wrapper.f file). Refer to [Gill,
P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] for information on NLSSOL’s optional input
parameters and the npoptn() subroutine.

The documentation for this class was generated from the following files:

� NLSSOLLeastSq.H
� NLSSOLLeastSq.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

308 DAKOTA Class Documentation

8.67 NoDBBaseConstructor Struct Reference

Dummy struct for overloading constructors used in on-the-fly instantiations.

Public Member Functions

� NoDBBaseConstructor (int=0)

C++ structs can have constructors.

8.67.1 Detailed Description

Dummy struct for overloading constructors used in on-the-fly instantiations.

NoDBBaseConstructor is used to overload the constructor used for on-the-fly iterator instantiations in
which ProblemDescDB queries cannot be used. Putting this struct here (rather than in a header of a class
that uses it) avoids problems with circular dependencies.

The documentation for this struct was generated from the following file:

� ProblemDescDB.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.68 NonD Class Reference 309

8.68 NonD Class Reference

Base class for all nondetermistic iterators (the DAKOTA/UQ branch).

Inheritance diagram for NonD::

NonD

Analyzer

Iterator

NonDReliability NonDSampling

NonDLHSSampling NonDPCESampling

Protected Member Functions

� NonD (Model &model)

constructor

� NonD (NoDBBaseConstructor, Model &model, int num_vars, const RealVector &lower_bnds,
const RealVector &upper_bnds)

alternate constructor for instantiations "on the fly"

� � NonD ()

destructor

� void run_iterator ()

redefines the main iterator hierarchy virtual function to invoke quantify_uncertainty

� const Response & iterator_response_results () const

return the final statistics from the nondeterministic iteration

� virtual void quantify_uncertainty ()=0

performs a forward uncertainty propagation of parameter distributions into response statistics

Protected Attributes

� RealMatrix uncertainCorrelations

uncertain variable correlation matrix (rank correlations for sampling and correlation coefficients for ana-
lytic reliability)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

310 DAKOTA Class Documentation

� size_t numNormalVars

number of normal uncertain variables

� size_t numLognormalVars

number of lognormal uncertain variables

� size_t numUniformVars

number of uniform uncertain variables

� size_t numLoguniformVars

number of loguniform uncertain variables

� size_t numWeibullVars

number of weibull uncertain variables

� size_t numHistogramVars

number of histogram uncertain variables

� size_t numUncertainVars

total number of uncertain variables

� size_t numResponseFunctions

number of response functions

� RealVector meanStats

means of response functions calculated in compute_statistics()

� RealVector mean95CIDeltas

Plus/minus deltas on response function means for 95% confidence intervals (calculated in compute_-
statistics()).

� RealVector stdDevStats

std deviations of response functions (calculated in compute_statistics())

� RealVector stdDev95CILowerBnds

Lower bound for 95% confidence interval on std deviation (calculated in compute_statistics()).

� RealVector stdDev95CIUpperBnds

Upper bound for 95% confidence interval on std deviation (calculated in compute_statistics()).

� RealVectorArray requestedRespLevels

requested response levels for all response functions

� RealVectorArray computedProbLevels

output probability levels for all response functions resulting from requestedRespLevels

� RealVectorArray computedRelLevels

output reliability levels for all response functions resulting from requestedRespLevels

� RealVectorArray requestedProbLevels

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.68 NonD Class Reference 311

requested probability levels for all response functions

� RealVectorArray requestedRelLevels

requested reliability (beta) levels for all response functions

� RealVectorArray computedRespLevels

output response levels for all response functions resulting from either requestedProbLevels or requested-
RelLevels

� size_t totalLevelRequests

total number of levels specified within requestedRespLevels, requestedProbLevels, and requestedRelLevels

� bool cdfFlag

flag for type of probabilities/reliabilities used in mappings: cumulative/CDF (true) or complemen-
tary/CCDF (false)

� bool respLevelProbFlag

flag to indicate mapping of z-
�

p (true) or z-
�

beta (false)

� bool correlationFlag

flag for indicating if correlation exists among the uncertain variables

� bool strategyFlag

flag indicating a strategy other than "single_method". Used to compute additional statistics for use at the
strategy level or to deactivate additional output not needed for strategy executions.

� Response finalStatistics

final statistics from the uncertainty propagation used in strategies: response means, standard deviations,
and probabilities of failure

Private Member Functions

� void distribute_levels (RealVectorArray &levels)

convenience function for distributing a vector of levels among multiple response functions if a short-hand
specification is employed.

8.68.1 Detailed Description

Base class for all nondetermistic iterators (the DAKOTA/UQ branch).

The base class for nondeterministic iterators consolidates uncertain variable data and probabilistic utilities
for inherited classes.

The documentation for this class was generated from the following files:

� DakotaNonD.H
� DakotaNonD.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

312 DAKOTA Class Documentation

8.69 NonDLHSSampling Class Reference

Performs LHS and Monte Carlo sampling for uncertainty quantification.

Inheritance diagram for NonDLHSSampling::

NonDLHSSampling

NonDSampling

NonD

Analyzer

Iterator

Public Member Functions

� NonDLHSSampling (Model &model)

constructor

� NonDLHSSampling (Model &model, int samples, int seed, int num_vars, const RealVector
&lower_bnds, const RealVector &upper_bnds)

alternate constructor for instantiations "on the fly"

� � NonDLHSSampling ()

destructor

� void quantify_uncertainty ()

performs a forward uncertainty propagation by using LHS to generate a set of parameter samples, perform-
ing function evaluations on these parameter samples, and computing statistics on the ensemble of results.

� void print_iterator_results (ostream &s) const

print the final statistics

Private Attributes

� bool allVarsFlag

flags DACE mode using all variables

� bool varBasedDecompFlag

flags computation of VBD

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.69 NonDLHSSampling Class Reference 313

8.69.1 Detailed Description

Performs LHS and Monte Carlo sampling for uncertainty quantification.

The Latin Hypercube Sampling (LHS) package from Sandia Albuquerque’s Risk and Reliability organiza-
tion provides comprehensive capabilities for Monte Carlo and Latin Hypercube sampling within a broad
array of user-specified probabilistic parameter distributions. It enforces user-specified rank correlations
through use of a mixing routine. The NonDLHSSampling class provides a C++ wrapper for the LHS
library and is used for performing forward propagations of parameter uncertainties into response statistics.

8.69.2 Constructor & Destructor Documentation

8.69.2.1 NonDLHSSampling (Model & model)

constructor

This constructor is called for a standard letter-envelope iterator instantiation. In this case, set_db_list_nodes
has been called and probDescDB can be queried for settings from the method specification.

8.69.2.2 NonDLHSSampling (Model & model, int samples, int seed, int num_vars, const RealVector
& lower_bnds, const RealVector & upper_bnds)

alternate constructor for instantiations "on the fly"

This alternate constructor is used by ConcurrentStrategy for generation of uniform, uncorrelated sample
sets. It is _not_ a letter-envelope instantiation and a set_db_list_nodes has not been performed. It is called
with all needed data passed through the constructor and is designed to allow more flexibility in variables set
definition (i.e., relax connection to a variables specification and allow sampling over parameter sets such as
multiobjective weights). Data attributes taken from the model in the NoDBBaseConstructor constructors
for NonD and Iterator are not used, and other data attributes are not initialized and should not be avoided.

8.69.3 Member Function Documentation

8.69.3.1 void quantify_uncertainty () [virtual]

performs a forward uncertainty propagation by using LHS to generate a set of parameter samples, perform-
ing function evaluations on these parameter samples, and computing statistics on the ensemble of results.

Loop over the set of samples and compute responses. Compute statistics on the set of responses if statsFlag
is set.

Implements NonD.

The documentation for this class was generated from the following files:

� NonDLHSSampling.H
� NonDLHSSampling.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

314 DAKOTA Class Documentation

8.70 NonDOptStrategy Class Reference

Strategy for optimization under uncertainty (robust and reliability-based design).

Inheritance diagram for NonDOptStrategy::

NonDOptStrategy

Strategy

Public Member Functions

� NonDOptStrategy (ProblemDescDB &problem_db)

constructor

� � NonDOptStrategy ()

destructor

� void run_strategy ()

Perform the strategy by executing optIterator (an optimizer) on designModel (a layered or nested model
containing a nondeterministic iterator at a lower level).

� const Variables & strategy_variable_results () const

return the final solution from optIterator (variables)

� const Response & strategy_response_results () const

return the final solution from optIterator (response)

� IteratorList & iterators (bool recurse_flag=true)

returns optIterator and any subordinate iterators

� ModelList & models (bool recurse_flag=true)

returns designModel and any subordinate models

Private Attributes

� Model designModel

the nested or layered model interfaced with optIterator

� Iterator optIterator

the top level optimizer

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.70 NonDOptStrategy Class Reference 315

8.70.1 Detailed Description

Strategy for optimization under uncertainty (robust and reliability-based design).

This strategy uses a NestedModel to nest an uncertainty quantification iterator within an optimiza-
tion iterator in order to perform optimization using nondeterministic data. For OUU based on surro-
gates, LayeredModels are also employed, and the general recursion facilities supported by nested and
layered models allow a broad array of OUU formulations. This class is very simple and is essen-
tially identical to SingleMethodStrategy since all of the nested iteration mappings are contained within
NestedModel::response_mapping().

The documentation for this class was generated from the following files:

� NonDOptStrategy.H
� NonDOptStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

316 DAKOTA Class Documentation

8.71 NonDPCESampling Class Reference

Stochastic finite element approach to uncertainty quantification using polynomial chaos expansions.

Inheritance diagram for NonDPCESampling::

NonDPCESampling

NonDSampling

NonD

Analyzer

Iterator

Public Member Functions

� NonDPCESampling (Model &model)

constructor

� � NonDPCESampling ()

destructor

� void quantify_uncertainty ()

perform a forward uncertainty propagation using SFEM/PCE methods

� void print_iterator_results (ostream &s) const

print the final statistics and PCE coefficient array

Private Attributes

� RealVectorArray coeffArray

Array containing Polynomial Chaos coefficients, one real vector per response function.

� int highestOrder

Highest order of Hermite Polynomials in Expansion.

� int numChaos

Number of terms in Polynomial Chaos Expansion.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.71 NonDPCESampling Class Reference 317

8.71.1 Detailed Description

Stochastic finite element approach to uncertainty quantification using polynomial chaos expansions.

The NonDPCE class uses a polynomial chaos expansion (PCE) approach to approximate the effect of
parameter uncertainties on response functions of interest. It utilizes the HermiteSurf and HermiteChaos
classes to perform the PCE.

The documentation for this class was generated from the following files:

� NonDPCESampling.H
� NonDPCESampling.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

318 DAKOTA Class Documentation

8.72 NonDReliability Class Reference

Class for the analytical reliability methods within DAKOTA/UQ.

Inheritance diagram for NonDReliability::

NonDReliability

NonD

Analyzer

Iterator

Public Member Functions

� NonDReliability (Model &model)

constructor

� � NonDReliability ()

destructor

� void quantify_uncertainty ()

performs an uncertainty propagation using analytical reliability methods which solve constrained optimiza-
tion problems to obtain approximations of the cumulative distribution function of response

� void print_iterator_results (ostream &s) const

print the approximate mean,standard deviation, and importance factors when using the mean value method
(MV) or the CDF information when using other reliability methods (AMV,AMV+,FORM)

� String uses_method () const

return name of active MPP optimizer

� void method_recourse ()

perform an MPP optimizer method switch due to a detected conflict

Private Member Functions

� void mean_value ()

convenience function for encapsulating the simple Mean Value computation of approximate statistics and
importance factors

� void iterated_mean_value ()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.72 NonDReliability Class Reference 319

convenience function for encapsulating the iterated reliability methods (AMV, AMV+, FORM, SORM)

� void initialize_mpp_search_data ()

convenience function for initializing/warm starting MPP search data for each z/p/beta level for each re-
sponse function

� void g_eval (int &mode, const Epetra_SerialDenseVector &u, Real &g)

convenience function for evaluating G(u) and fnGradU(u). Used by RIA_constraint_eval() and both
PMA_objective_eval() implementations.

� void transUToX (const Epetra_SerialDenseVector &uncorr_normal_vars, Epetra_SerialDenseVector
&random_vars)

Transformation Routine from u-space of random variables to x-space of random variables for Petra data
types.

� void transUToX (const RealVector &uncorr_normal_vars, RealVector &random_vars)

Transformation Routine from u-space of random variables to x-space of random variables for RealVector
data types.

� void transUToZ (const Epetra_SerialDenseVector &uncorr_normal_vars, Epetra_SerialDenseVector
&correlated_normal_vars)

Transformation Routine from u-space of random variables to z-space of random variables for Petra data
types.

� void transZToX (const Epetra_SerialDenseVector &correlated_normal_vars, Epetra_SerialDense-
Vector &random_vars)

Transformation Routine from z-space of random variables to x-space of random variables for Petra data
types.

� void transXToU (const Epetra_SerialDenseVector &random_vars, Epetra_SerialDenseVector
&uncorr_normal_vars)

Transformation Routine from x-space of random variables to u-space of random variables for Petra data
types.

� void transXToZ (const Epetra_SerialDenseVector &random_vars, Epetra_SerialDenseVector
&correlated_normal_vars)

Transformation Routine from x-space of random variables to z-space of random variables for Petra data
types.

� void transZToU (Epetra_SerialDenseVector &correlated_normal_vars, Epetra_SerialDenseVector
&uncorr_normal_vars)

Transformation Routine from z-space of random variables to u-space of random variables for Petra data
types.

� void jacXToU (const Epetra_SerialDenseVector &random_vars, Epetra_SerialDenseMatrix
&jacobianXU)

Jacobian of mapping from x to u random variable space.

� void jacXToZ (const Epetra_SerialDenseVector &random_vars, Epetra_SerialDenseMatrix
&jacobianXZ)

Jacobian of mapping from x to z random variable space.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

320 DAKOTA Class Documentation

� void jacUToX (const Epetra_SerialDenseVector &uncorr_normal_vars, Epetra_SerialDenseMatrix
&jacobianUX)

Jacobian of mapping from u to x random variable space.

� void jacZToX (const Epetra_SerialDenseVector &correlated_normal_vars, Epetra_SerialDense-
Matrix &jacobianZX)

Jacobian of mapping from z to x random variable space.

� void transNataf (Epetra_SerialSymDenseMatrix &mod_corr_matrix)

This procedure modifys the correlation matrix input by the user to be used in the Nataf distribution model.

� double phi (const double &beta)

Standard normal cumulative distribution function.

� double phi_inverse (const double &p)

Inverse of standard normal cumulative distribution function.

� double erf_inverse (const double &p)

Inverse of error function used in phi_inverse().

Static Private Member Functions

� void RIA_objective_eval (int &mode, int &n, Real � u, Real &f, Real � grad_f, int &)

static function used by NPSOL as the objective function in the Reliability Index Approach (RIA) problem
formulation. This equality-constrained optimization problem performs the search for the most probable
point (MPP) with the objective function of (norm u)

�

2.

� void RIA_constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int � needc, Real � u, Real � c,
Real � cjac, int &nstate)

static function used by NPSOL as the constraint function in the Reliability Index Approach (RIA) problem
formulation. This equality-constrained optimization problem performs the search for the most probable
point (MPP) with the constraint of G(u) = response level.

� void PMA_objective_eval (int &mode, int &n, Real � u, Real &f, Real � grad_f, int &)

static function used by NPSOL as the objective function in the Performance Measure Approach (PMA)
problem formulation. This equality-constrained optimization problem performs the search for the most
probable point (MPP) with the objective function of G(u).

� void PMA_constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int � needc, Real � u, Real
� c, Real � cjac, int &nstate)

static function used by NPSOL as the constraint function in the Performance Measure Approach (PMA)
problem formulation. This equality-constrained optimization problem performs the search for the most
probable point (MPP) with the constraint of (norm u)

�

2 = beta
�

2.

� void RIA_objective_eval (int mode, int n, const ColumnVector &u, Real &f, ColumnVector &grad_-
f, int &result_mode)

static function used by OPT++ as the objective function in the Reliability Index Approach (RIA) problem
formulation. This equality-constrained optimization problem performs the search for the most probable
point (MPP) with the objective function of (norm u)

�

2.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.72 NonDReliability Class Reference 321

� void RIA_constraint_eval (int mode, int n, const ColumnVector &u, ColumnVector &g,::Matrix
&grad_g, int &result_mode)

static function used by OPT++ as the constraint function in the Reliability Index Approach (RIA) problem
formulation. This equality-constrained optimization problem performs the search for the most probable
point (MPP) with the constraint of G(u) = response level.

� void PMA_objective_eval (int mode, int n, const ColumnVector &u, Real &f, ColumnVector
&grad_f, int &result_mode)

static function used by OPT++ as the objective function in the Performance Measure Approach (PMA)
problem formulation. This equality-constrained optimization problem performs the search for the most
probable point (MPP) with the objective function of G(u).

� void PMA_constraint_eval (int mode, int n, const ColumnVector &u, ColumnVector &g,::Matrix
&grad_g, int &result_mode)

static function used by OPT++ as the constraint function in the Performance Measure Approach (PMA)
problem formulation. This equality-constrained optimization problem performs the search for the most
probable point (MPP) with the constraint of (norm u)

�

2 = beta
�

2.

Private Attributes

� size_t numRelAnalyses

number of invocations of quantify_uncertainty()

� Epetra_SerialDenseVector fnValsMeanX

copy of response fn values evaluated at mean x

� Epetra_SerialDenseMatrix fnGradsMeanX

copy of response fn gradients evaluated at mean x

� Epetra_SerialDenseVector fnGradX

gradient of current response function in x-space

� Epetra_SerialDenseVector fnGradU

gradient of current response function in u-space

� RealVector medianFnVals

vector of median values of functions used to determine which side of probability equal 0.5 the response level
is

� Epetra_SerialSymDenseMatrix petraCorrMatrix

petra copy of uncertainCorrelations

� Epetra_SerialDenseMatrix cholCorrMatrix

cholesky factor of petraCorrMatrix

� RealVector initialPtU

initial guess for MPP search in u-space

� Epetra_SerialDenseVector mostProbPointX

location of MPP in x-space

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

322 DAKOTA Class Documentation

� Epetra_SerialDenseVector mostProbPointU

location of MPP in u-space

� RealVectorArray mostProbPointULev0

array of converged MPP’s in u-space for level 0. Used for warm-starting of reliability analyses within
strategies such as nested RBDO.

� IntVector ranVarType

vector of indices indicating the type of each uncertain variable

� Epetra_SerialDenseVector ranVarMeansX

vector of means for all uncertain random variables in x-space

� Epetra_SerialDenseVector ranVarMeansU

vector of means for all uncertain random variables in u-space

� Epetra_SerialDenseVector ranVarStdDevsX

vector of standard deviations for all uncertain random variables in x-space

� int respFnCount

counter for which response function is being analyzed

� int levelCount

counter for which response/probability level is being analyzed

� Real requestedRespLevel

the response level target for the current response function

� Real requestedCDFRelLevel

the CDF reliability level target for the current response function

� Real computedRespLevel

output response level calculated

� Real computedProbLevel

output probability level calculated

� Real computedRelLevel

output reliability level calculated

� short mppSearchFlag

flag representing the MPP search type selection (MV, AMV, transformed AMV, AMV+, transformed AMV+,
or FORM)

� bool npsolFlag

flag representing the optimization MPP search algorithm selection (SQP or NIP)

� bool warmStartFlag

flag indicating the use of warm starts

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.72 NonDReliability Class Reference 323

� String integrationMethod

integration method identifier provided by integration specification

� RealMatrix impFactor

importance factors predicted by MV

� int npsolDerivLevel

derivative level for NPSOL executions (1 = analytic grads of objective fn, 2 = analytic grads of constraints,
3 = analytic grads of both).

� Real Pi

the value for Pi used in several numerical routines

Static Private Attributes

� NonDReliability � nondRelInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for
static data

8.72.1 Detailed Description

Class for the analytical reliability methods within DAKOTA/UQ.

The NonDReliability class implements the following analytic reliability methods: advanced mean value
method (AMV), iterated advanced mean value method (AMV+), first order reliability method (FORM),
and second order reliability method (SORM). Each of these employ an optimizer (currently NPSOL) to
perform a search for the most probable point (MPP).

8.72.2 Member Function Documentation

8.72.2.1 void initialize_mpp_search_data () [private]

convenience function for initializing/warm starting MPP search data for each z/p/beta level for each re-
sponse function

Initialize/warm-start optimizer initial guess (initialPtU), linearization point (mostProbPointX/U), and as-
sociated response data (computedRespLevel and fnGradX/U).

8.72.2.2 void transUToX (const Epetra_SerialDenseVector & uncorr_normal_vars,
Epetra_SerialDenseVector & random_vars) [private]

Transformation Routine from u-space of random variables to x-space of random variables for Petra data
types.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

324 DAKOTA Class Documentation

This procedure performs the transformation from u to x space. uncorr_normal_vars is the vector of random
variables in standard normal space (u-space). random_vars is the vector of the random variables in the
user-defined x-space

8.72.2.3 void transUToZ (const Epetra_SerialDenseVector & uncorr_normal_vars,
Epetra_SerialDenseVector & correlated_normal_vars) [private]

Transformation Routine from u-space of random variables to z-space of random variables for Petra data
types.

This procedure computes the transformation from u to z space. uncorr_normal_vars is the vector of random
variables in standard normal space (u-space). correlated_normal_vars is the vector of random variables in
normal space with proper correlations (z-space).

8.72.2.4 void transZToX (const Epetra_SerialDenseVector & correlated_normal_vars,
Epetra_SerialDenseVector & random_vars) [private]

Transformation Routine from z-space of random variables to x-space of random variables for Petra data
types.

This procedure computes the transformation from z to x space. correlated_normal_vars is the vector of
random variables in normal space with proper correlations (z-space). random_vars is the vector of the
random variables in the user-defined x-space

8.72.2.5 void transXToU (const Epetra_SerialDenseVector & random_vars,
Epetra_SerialDenseVector & uncorr_normal_vars) [private]

Transformation Routine from x-space of random variables to u-space of random variables for Petra data
types.

This procedure performs the transformation from x to u space uncorr_normal_vars is the vector of random
variables in standard normal space (u-space). random_vars is the vector of the random variables in the
user-defined x-space.

8.72.2.6 void transXToZ (const Epetra_SerialDenseVector & random_vars,
Epetra_SerialDenseVector & correlated_normal_vars) [private]

Transformation Routine from x-space of random variables to z-space of random variables for Petra data
types.

This procedure performs the transformation from x to z space: correlated_normal_vars is the vector of
random variables in normal space with proper correlations(z-space). random_vars is the vector of the
random variables in the user-defined x-space.

8.72.2.7 void transZToU (Epetra_SerialDenseVector & correlated_normal_vars,
Epetra_SerialDenseVector & uncorr_normal_vars) [private]

Transformation Routine from z-space of random variables to u-space of random variables for Petra data
types.

This procedure computes the transformation from z to u space. uncorr_normal_vars is the vector of random
variables in standard normal space (u-space). correlated_normal_vars is the vector of random variables in
normal space with proper correlations (z-space).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.72 NonDReliability Class Reference 325

8.72.2.8 void jacXToU (const Epetra_SerialDenseVector & random_vars,
Epetra_SerialDenseMatrix & jacobianXU) [private]

Jacobian of mapping from x to u random variable space.

This procedure computes the jacobian of the transformation from x to u space. random_vars is the vector
of the random variables in the user-defined x-space.

8.72.2.9 void jacXToZ (const Epetra_SerialDenseVector & random_vars,
Epetra_SerialDenseMatrix & jacobianXZ) [private]

Jacobian of mapping from x to z random variable space.

This procedure computes the jacobian of the transformation from x to z space. random_vars is the vector
of the random variables in the user-defined x-space.

8.72.2.10 void jacUToX (const Epetra_SerialDenseVector & uncorr_normal_vars,
Epetra_SerialDenseMatrix & jacobianUX) [private]

Jacobian of mapping from u to x random variable space.

This procedure computes the jacobian of the transformation from u to x space. uncorr_normal_vars is the
vector of random variables in standard normal space (u-space).

8.72.2.11 void jacZToX (const Epetra_SerialDenseVector & correlated_normal_vars,
Epetra_SerialDenseMatrix & jacobianZX) [private]

Jacobian of mapping from z to x random variable space.

This procedure computes the jacobian of the transformation from z to x space. correlated_normal_vars is
the vector of random variables in normal space with proper correlations (z-space).

8.72.2.12 void transNataf (Epetra_SerialSymDenseMatrix & mod_corr_matrix) [private]

This procedure modifys the correlation matrix input by the user to be used in the Nataf distribution model.

This procedure modifys the correlation matrix input by the user to be used in the Nataf distribution model
(der Kiureghian and Liu, ASCE JEM 112:1, 1986).

R: the correlation coefficient matrix of the random variables

mod_corr_matrix: modified correlation matrix

Note: The modification is exact for log-log,normal-log,normal-normal, normal-uniform tranformations
(numerical precision). The uniform-uniform and uniform-log case are approximations obtained in the
above reference.

8.72.2.13 double phi (const double & beta) [private]

Standard normal cumulative distribution function.

returns a probability � 0.5 for negative beta and a probability � 0.5 for positive beta.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

326 DAKOTA Class Documentation

8.72.2.14 double phi_inverse (const double & p) [private]

Inverse of standard normal cumulative distribution function.

returns a negative beta for probability � 0.5 and a positive beta for probability � 0.5.

The documentation for this class was generated from the following files:

� NonDReliability.H
� NonDReliability.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.73 NonDSampling Class Reference 327

8.73 NonDSampling Class Reference

Base class for common code between NonDLHSSampling and NonDPCESampling.

Inheritance diagram for NonDSampling::

NonDSampling

NonD

Analyzer

Iterator

NonDLHSSampling NonDPCESampling

Protected Member Functions

� NonDSampling (Model &model)

constructor

� NonDSampling (NoDBBaseConstructor, Model &model, int samples, int seed, int num_vars, const
RealVector &lower_bnds, const RealVector &upper_bnds)

alternate constructor for instantiations "on the fly"

� � NonDSampling ()

destructor

� void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

resets number of samples and sampling flags

� const String & sampling_scheme () const

return sampleType: "lhs" or "random"

� void get_parameter_sets (bool vbd_change_seq_flag)

Uses run_lhs() to generate a set of samples. In the usual mode, this will be called once. In variance-based
decomposition or replicated LHS, it may be called several times.

� void run_lhs ()

generates the desired set of parameter samples from within user-specified probabilistic distributions. Sup-
ports both old and new LHS libraries. Used by NonDLHSSampling and NonDPCESampling.

� void compute_statistics (const RealVectorArray &samples)

computes mean, standard deviation, and probability of failure for the samples input

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

328 DAKOTA Class Documentation

� void compute_correlations (const RealVectorArray &all_c_vars, const RealVectorArray &all_fns)

computes four correlation matrices for input and output data simple, partial, simple rank, and partial rank

� void simple_corr (Epetra_SerialDenseMatrix &total_data, const int &num_obs, const int &num_-
corr, const bool &rank_on)

computes simple correlations

� void partial_corr (Epetra_SerialDenseMatrix &total_data, const int &num_obs, const int &num_-
corr, const bool &rank_on)

computes partial correlations

� void print_statistics (ostream &s) const

prints the mean, standard deviation, and probability of failure statistics computed in compute_statistics()

Static Protected Member Functions

� bool rank_sort (const int &x, const int &y)

sort algorithm to compute ranks for rank correlations

Protected Attributes

� int numObservations

the number of samples to evaluate

� String sampleType

the sample type: "lhs" or "random"

� bool statsFlag

flags computation/output of statistics

� bool allDataFlag

flags update of allVariables/allResponses

� size_t numActiveVars

total number of variables published to LHS

� size_t numDesignVars

number of design variables (treated as uniform distribution within design variable bounds for DACE usage
of NonDSampling)

� size_t numStateVars

number of state variables (treated as uniform distribution within state variable bounds for DACE usage of
NonDSampling)

� bool varyPattern

flag for generating a sequence of seed values within multiple run_lhs() calls so that the run_lhs() executions
(e.g., for surrogate-based optimization) are repeatable but not correlated.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.73 NonDSampling Class Reference 329

Private Member Functions

� void check_error (const int &err_code, const char � err_source) const

checks the return codes from LHS routines and aborts if an error is returned

Private Attributes

� const int originalSeed

the user seed specification (default is 0)

� int randomSeed

the current random number seed

� size_t numLHSRuns

counter for number of executions of run_lhs() for this object

� Epetra_SerialDenseMatrix simpleCorr

matrix to hold simple raw correlations

� Epetra_SerialDenseMatrix simpleRankCorr

matrix to hold simple rank correlations

� Epetra_SerialDenseMatrix partialCorr

matrix to hold partial raw correlations

� Epetra_SerialDenseMatrix partialRankCorr

matrix to hold partial rank correlations

Static Private Attributes

� RealArray rawData

vector to hold raw data before rank sort

� int pgf90Initialized

flag indicating whether pghpf_init() has been called.

8.73.1 Detailed Description

Base class for common code between NonDLHSSampling and NonDPCESampling.

This base class provides common code for sampling methods which employ the Latin Hypercube Sampling
(LHS) package from Sandia Albuquerque’s Risk and Reliability organization. NonDSampling manages
two LHS versions within a #ifdef construct in run_lhs(): (1) the 1998 Fortran 90 LHS version as docu-
mented in SAND98-0210, which was converted to a UNIX link library in 2001, (2) the 1970’s vintage
LHS that had been f2c’d and converted to (incomplete) classes.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

330 DAKOTA Class Documentation

8.73.2 Constructor & Destructor Documentation

8.73.2.1 NonDSampling (Model & model) [protected]

constructor

This constructor is called for a standard letter-envelope iterator instantiation. In this case, set_db_list_nodes
has been called and probDescDB can be queried for settings from the method specification.

8.73.2.2 NonDSampling (NoDBBaseConstructor, Model & model, int samples, int seed,
int num_vars, const RealVector & lower_bnds, const RealVector & upper_bnds)
[protected]

alternate constructor for instantiations "on the fly"

This alternate constructor is used by ConcurrentStrategy for generation of uniform, uncorrelated sample
sets.

8.73.3 Member Function Documentation

8.73.3.1 void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag) [inline,
protected, virtual]

resets number of samples and sampling flags

used by ApproximationInterface::build_global_approximation() to publish the minimum number of sam-
ples needed from the sampling routine (to build a particular global approximation) and to set allDataFlag
and statsFlag. In this case, allDataFlag is set to true (vectors of variable and response sets must be returned
to build the global approximation) and statsFlag is set to false (statistics computations are not needed).

Reimplemented from Iterator.

The documentation for this class was generated from the following files:

� NonDSampling.H
� NonDSampling.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.74 NPSOLOptimizer Class Reference 331

8.74 NPSOLOptimizer Class Reference

Wrapper class for the NPSOL optimization library.

Inheritance diagram for NPSOLOptimizer::

NPSOLOptimizer

Optimizer SOLBase

Minimizer

Iterator

Public Member Functions

� NPSOLOptimizer (Model &model)

standard constructor

� NPSOLOptimizer (const RealVector &initial_point, const RealVector &var_lower_bnds, const
RealVector &var_upper_bnds, int num_lin_ineq, int num_lin_eq, int num_nln_ineq, int num_nln_-
eq, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lower_bnds, const RealVector
&lin_ineq_upper_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_targets,
const RealVector &nonlin_ineq_lower_bnds, const RealVector &nonlin_ineq_upper_bnds, const
RealVector &nonlin_eq_targets, void(� user_obj_eval)(int &, int &, Real � , Real &, Real � , int &),
void(� user_con_eval)(int &, int &, int &, int &, int � , Real � , Real � , Real � , int &), const int
&derivative_level, const Real &conv_tol)

alternate constructor for instantiations "on the fly"

� � NPSOLOptimizer ()

destructor

� void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual
function for the optimizer branch.

Private Member Functions

� void find_optimum_on_model ()

called by find_optimum for setUpType == "model"

� void find_optimum_on_user_functions ()

called by find_optimum for setUpType == "user_functions"

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

332 DAKOTA Class Documentation

Static Private Member Functions

� void objective_eval (int &mode, int &n, double � x, double &f, double � gradf, int &nstate)

OBJFUN in NPSOL manual: computes the value and first derivatives of the objective function (passed by
function pointer to NPSOL).

Private Attributes

� String setUpType

controls iteration mode: "model" (normal usage) or "user_functions" (user-supplied functions mode for "on
the fly" instantiations). NonDReliability currently uses the user_functions mode.

� RealVector initialPoint

holds initial point passed in for "user_functions" mode.

� RealVector lowerBounds

holds variable lower bounds passed in for "user_functions" mode.

� RealVector upperBounds

holds variable upper bounds passed in for "user_functions" mode.

� void(� userObjectiveEval)(int &, int &, Real � , Real &, Real � , int &)

holds function pointer for objective function evaluator passed in for "user_functions" mode.

� void(� userConstraintEval)(int &, int &, int &, int &, int � , Real � , Real � , Real � , int &)

holds function pointer for constraint function evaluator passed in for "user_functions" mode.

Static Private Attributes

� NPSOLOptimizer � npsolInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for
static data

8.74.1 Detailed Description

Wrapper class for the NPSOL optimization library.

The NPSOLOptimizer class provides a wrapper for NPSOL, a Fortran 77 sequential quadratic program-
ming library from Stanford University marketed by Stanford Business Associates. It uses a function pointer
approach for which passed functions must be either global functions or static member functions. Any at-
tribute used within static member functions must be either local to that function or accessed through a static
pointer.

The user input mappings are as follows: max_function_evaluations is implemented directly
in NPSOLOptimizer’s evaluator functions since there is no NPSOL parameter equivalent, and max_-
iterations, convergence_tolerance, output verbosity, verify_level, function_-
precision, and linesearch_tolerance are mapped into NPSOL’s "Major Iteration Limit", "Op-
timality Tolerance", "Major Print Level" (verbose: Major Print Level = 20; quiet: Major Print Level

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.74 NPSOLOptimizer Class Reference 333

= 10), "Verify Level", "Function Precision", and "Linesearch Tolerance" parameters, respectively, using
NPSOL’s npoptn() subroutine (as wrapped by npoptn2() from the npoptn_wrapper.f file). Refer to [Gill,
P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] for information on NPSOL’s optional input
parameters and the npoptn() subroutine.

The documentation for this class was generated from the following files:

� NPSOLOptimizer.H
� NPSOLOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

334 DAKOTA Class Documentation

8.75 Optimizer Class Reference

Base class for the optimizer branch of the iterator hierarchy.

Inheritance diagram for Optimizer::

Optimizer

Minimizer

Iterator

CONMINOptimizer DOTOptimizer JEGAOptimizer NPSOLOptimizer rSQPOptimizer SGOPTOptimizer SNLLOptimizer

Public Member Functions

� void run_iterator ()

run the iterator

Protected Member Functions

� Optimizer ()

default constructor

� Optimizer (Model &model)

standard constructor

� � Optimizer ()

destructor

� void print_iterator_results (ostream &s) const
� void multi_objective_weights (const RealVector &multi_obj_wts)

set the relative weightings for multiple objective functions. Used by ConcurrentStrategy for Pareto set
optimization.

� virtual void find_optimum ()=0

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual
function for the optimizer branch.

� Response multi_objective_modify (const Response &raw_response) const

forward mapping: maps multiple objective functions to a single objective for single-objective optimizers

� const RealVector & multi_objective_retrieve (const Variables &vars, const Response &response)
const

inverse mapping: retrieves values for multiple objective functions from the solution of a single-objective
optimizer

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.75 Optimizer Class Reference 335

Protected Attributes

� size_t numObjectiveFunctions

number of objective functions

� RealVector multiObjWeights

user-specified weights for multiple objective functions

8.75.1 Detailed Description

Base class for the optimizer branch of the iterator hierarchy.

The Optimizer class provides common data and functionality for DOTOptimizer, NPSOLOptimizer,
SNLLOptimizer, and SGOPTOptimizer.

8.75.2 Constructor & Destructor Documentation

8.75.2.1 Optimizer (Model & model) [protected]

standard constructor

This constructor extracts the inherited data for the optimizer branch and performs sanity checking on gra-
dient and constraint settings.

8.75.3 Member Function Documentation

8.75.3.1 void run_iterator () [inline, virtual]

run the iterator

This function is the primary run function for the iterator class hierarchy. All derived classes need to redefine
it.

Reimplemented from Iterator.

8.75.3.2 void print_iterator_results (ostream & s) const [protected, virtual]

Redefines default iterator results printing to include optimization results (objective function and con-
straints).

Reimplemented from Iterator.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

336 DAKOTA Class Documentation

8.75.3.3 Response multi_objective_modify (const Response & raw_response) const
[protected]

forward mapping: maps multiple objective functions to a single objective for single-objective optimizers

This function is responsible for the mapping of multiple objective functions into a single objective for
publishing to single-objective optimizers. Used in DOTOptimizer, NPSOLOptimizer, SNLLOptimizer,
and SGOPTApplication on every function evaluation. The simple weighting approach (using multiObj-
Weights) is the only technique supported currently. The weightings are used to scale function values,
gradients, and Hessians as needed.

8.75.3.4 const RealVector & multi_objective_retrieve (const Variables & vars, const Response &
response) const [protected]

inverse mapping: retrieves values for multiple objective functions from the solution of a single-objective
optimizer

Retrieve a full multiobjective response based on the data returned by a single objective optimizer by per-
forming a data_pairs search.

The documentation for this class was generated from the following files:

� DakotaOptimizer.H
� DakotaOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.76 ParallelConfiguration Class Reference 337

8.76 ParallelConfiguration Class Reference

Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel par-
allel configuration.

Public Member Functions

� ParallelConfiguration ()

default constructor

� ParallelConfiguration (const ParallelConfiguration &pl)

copy constructor

� � ParallelConfiguration ()

destructor

� ParallelConfiguration & operator= (const ParallelConfiguration &pl)

assignment operator

� const ParallelLevel & w_parallel_level () const

return the ParallelLevel corresponding to wPLIter

� const ParallelLevel & si_parallel_level () const

return the ParallelLevel corresponding to siPLIter

� const ParallelLevel & ie_parallel_level () const

return the ParallelLevel corresponding to iePLIter

� const ParallelLevel & ea_parallel_level () const

return the ParallelLevel corresponding to eaPLIter

Private Member Functions

� void assign (const ParallelConfiguration &pl)

assign the attributes of the incoming pl to this object

Private Attributes

� short numParallelLevels

number of parallel levels

� ParLevLIter wPLIter

list iterator for MPI_COMM_WORLD (not strictly required, but improves modularity by avoiding explicit
usage of MPI_COMM_WORLD)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

338 DAKOTA Class Documentation

� ParLevLIter siPLIter

list iterator for concurrent iterator partitions (there may be more than one per parallel configuration in-
stance)

� ParLevLIter iePLIter

list iterator identifying the iterator-evaluation parallelLevel (there can only be one)

� ParLevLIter eaPLIter

list iterator identifying the evaluation-analysis parallelLevel (there can only be one)

8.76.1 Detailed Description

Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel par-
allel configuration.

Rather than containing the multilevel parallel configuration directly, ParallelConfiguration instead provides
a set of list iterators which point into a combined list of ParallelLevels. This approach allows different
configurations to reuse ParallelLevels without copying them. A list of ParallelConfigurations is contained
in ParallelLibrary (ParallelLibrary::parallelConfigurations).

The documentation for this class was generated from the following file:

� ParallelLibrary.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.77 ParallelLevel Class Reference 339

8.77 ParallelLevel Class Reference

Container class for the data associated with a single level of communicator partitioning.

Public Member Functions

� ParallelLevel ()

default constructor

� ParallelLevel (const ParallelLevel &pl)

copy constructor

� � ParallelLevel ()

destructor

� ParallelLevel & operator= (const ParallelLevel &pl)

assignment operator

� bool dedicated_master_flag () const

return dedicatedMasterFlag

� bool communicator_split_flag () const

return commSplitFlag

� bool server_master_flag () const

return serverMasterFlag

� bool message_pass () const

return messagePass

� const int & num_servers () const

return numServers

� const int & processors_per_server () const

return procsPerServer

� const MPI_Comm & server_intra_communicator () const

return serverIntraComm

� const int & server_communicator_rank () const

return serverCommRank

� const int & server_communicator_size () const

return serverCommSize

� const MPI_Comm & hub_server_intra_communicator () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

340 DAKOTA Class Documentation

return hubServerIntraComm

� const int & hub_server_communicator_rank () const

return hubServerCommRank

� const int & hub_server_communicator_size () const

return hubServerCommSize

� const MPI_Comm & hub_server_inter_communicator () const

return hubServerInterComm

� MPI_Comm � hub_server_inter_communicators () const

return hubServerInterComms

� const int & server_id () const

return serverId

Private Member Functions

� void assign (const ParallelLevel &pl)

assign the attributes of the incoming pl to this object

Private Attributes

� bool dedicatedMasterFlag

signals dedicated master partitioning

� bool commSplitFlag

signals a communicator split was used

� bool serverMasterFlag

identifies master server processors

� bool messagePass

flag for message passing at this level

� int numServers

number of servers

� int procsPerServer

processors per server

� MPI_Comm serverIntraComm

intracomm. for each server partition

� int serverCommRank

rank in serverIntraComm

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.77 ParallelLevel Class Reference 341

� int serverCommSize

size of serverIntraComm

� MPI_Comm hubServerIntraComm

intracomm for all serverCommRank==0 w/i next higher level serverIntraComm

� int hubServerCommRank

rank in hubServerIntraComm

� int hubServerCommSize

size of hubServerIntraComm

� MPI_Comm hubServerInterComm

intercomm. between a server & the hub (on server partitions only)

� MPI_Comm � hubServerInterComms

intercomm. array on hub processor

� int serverId

server identifier

8.77.1 Detailed Description

Container class for the data associated with a single level of communicator partitioning.

A list of these levels is contained in ParallelLibrary (ParallelLibrary::parallelLevels), which defines all of
the parallelism levels across one or more multilevel parallelism configurations.

The documentation for this class was generated from the following file:

� ParallelLibrary.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

342 DAKOTA Class Documentation

8.78 ParallelLibrary Class Reference

Class for partitioning multiple levels of parallelism and managing message passing within these levels.

Public Member Functions

� ParallelLibrary (int &argc, char � � &argv)

stand-alone mode constructor

� ParallelLibrary ()

library mode constructor

� ParallelLibrary (int dummy)

dummy constructor (used for dummy_lib)

� � ParallelLibrary ()

destructor

� const ParallelLevel & init_iterator_communicators (const int &iterator_servers, const int &procs_-
per_iterator, const int &max_iterator_concurrency, const String &default_config, const String
&iterator_scheduling)

split MPI_COMM_WORLD into iterator communicators

� const ParallelLevel & init_evaluation_communicators (const int &evaluation_servers, const
int &procs_per_evaluation, const int &max_evaluation_concurrency, const int &asynch_local_-
evaluation_concurrency, const String &default_config, const String &evaluation_scheduling)

split an iterator communicator into evaluation communicators

� const ParallelLevel & init_analysis_communicators (const int &analysis_servers, const int &procs_-
per_analysis, const int &max_analysis_concurrency,const int &asynch_local_analysis_concurrency,
const String &default_config, const String &analysis_scheduling)

split an evaluation communicator into analysis communicators

� void free_iterator_communicators ()

deallocate iterator communicators

� void free_evaluation_communicators ()

deallocate evaluation communicators

� void free_analysis_communicators ()

deallocate analysis communicators

� void print_configuration ()

print the parallel level settings for a particular parallel configuration

� void specify_outputs_restart (CommandLineHandler &cmd_line_handler)

specify output streams and restart file(s) using command line inputs (normal mode)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.78 ParallelLibrary Class Reference 343

� void specify_outputs_restart (const char � clh_std_output_filename, const char � clh_std_error_-
filename, const char � clh_read_restart_filename, const char � clh_write_restart_filename, int restart_-
evals)

specify output streams and restart file(s) using external inputs (library mode).

� void manage_outputs_restart (const ParallelLevel &pl)

manage output streams and restart file(s) (both modes)

� void close_streams ()

close streams, files, and any other services

� void send_si (MPIPackBuffer &send_buff, int dest, int tag)

blocking send at the strategy-iterator communication level

� void isend_si (MPIPackBuffer &send_buff, int dest, int tag, MPI_Request &send_req)

nonblocking send at the strategy-iterator communication level

� void recv_si (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Status &status)

blocking receive at the strategy-iterator communication level

� void irecv_si (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Request &recv_req)

nonblocking receive at the strategy-iterator communication level

� void send_ie (MPIPackBuffer &send_buff, int dest, int tag)

blocking send at the iterator-evaluation communication level

� void isend_ie (MPIPackBuffer &send_buff, int dest, int tag, MPI_Request &send_req)

nonblocking send at the iterator-evaluation communication level

� void recv_ie (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Status &status)

blocking receive at the iterator-evaluation communication level

� void irecv_ie (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Request &recv_req)

nonblocking receive at the iterator-evaluation communication level

� void send_ea (int &send_int, int dest, int tag)

blocking send at the evaluation-analysis communication level

� void isend_ea (int &send_int, int dest, int tag, MPI_Request &send_req)

nonblocking send at the evaluation-analysis communication level

� void recv_ea (int &recv_int, int source, int tag, MPI_Status &status)

blocking receive at the evaluation-analysis communication level

� void irecv_ea (int &recv_int, int source, int tag, MPI_Request &recv_req)

nonblocking receive at the evaluation-analysis communication level

� void bcast_w (int &data)

broadcast an integer across MPI_COMM_WORLD

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

344 DAKOTA Class Documentation

� void bcast_i (int &data)

broadcast an integer across an iterator communicator

� void bcast_e (int &data)

broadcast an integer across an evaluation communicator

� void bcast_a (int &data)

broadcast an integer across an analysis communicator

� void bcast_si (int &data)

broadcast an integer across a strategy-iterator intra communicator

� void bcast_w (MPIPackBuffer &send_buff)

broadcast a packed buffer across MPI_COMM_WORLD

� void bcast_i (MPIPackBuffer &send_buff)

broadcast a packed buffer across an iterator communicator

� void bcast_e (MPIPackBuffer &send_buff)

broadcast a packed buffer across an evaluation communicator

� void bcast_a (MPIPackBuffer &send_buff)

broadcast a packed buffer across an analysis communicator

� void bcast_si (MPIPackBuffer &send_buff)

broadcast a packed buffer across a strategy-iterator intra communicator

� void bcast_w (MPIUnpackBuffer &recv_buff)

matching receive for packed buffer broadcast across MPI_COMM_WORLD

� void bcast_i (MPIUnpackBuffer &recv_buff)

matching receive for packed buffer bcast across an iterator communicator

� void bcast_e (MPIUnpackBuffer &recv_buff)

matching receive for packed buffer bcast across an evaluation communicator

� void bcast_a (MPIUnpackBuffer &recv_buff)

matching receive for packed buffer bcast across an analysis communicator

� void bcast_si (MPIUnpackBuffer &recv_buff)

matching recv for packed buffer bcast across a strat-iterator intra comm

� void barrier_w ()

enforce MPI_Barrier on MPI_COMM_WORLD

� void barrier_i ()

enforce MPI_Barrier on an iterator communicator

� void barrier_e ()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.78 ParallelLibrary Class Reference 345

enforce MPI_Barrier on an evaluation communicator

� void barrier_a ()

enforce MPI_Barrier on an analysis communicator

� void reduce_sum_ea (double � local_vals, double � sum_vals, const int &num_vals)

compute a sum over an eval-analysis intra-communicator using MPI_Reduce

� void reduce_sum_a (double � local_vals, double � sum_vals, const int &num_vals)

compute a sum over an analysis communicator using MPI_Reduce

� void test (MPI_Request &request, int &test_flag, MPI_Status &status)

test a nonblocking send/receive request for completion

� void wait (MPI_Request &request, MPI_Status &status)

wait for a nonblocking send/receive request to complete

� void waitall (const int &num_recvs, MPI_Request � &recv_reqs)

wait for all messages from a series of nonblocking receives

� void waitsome (const int &num_sends, MPI_Request � &recv_requests, int &num_recvs, int
� &index_array, MPI_Status � &status_array)

wait for at least one message from a series of nonblocking receives but complete all that are available

� void free (MPI_Request &request)

free an MPI_Request

� const int & world_size () const

return worldSize

� const int & world_rank () const

return worldRank

� bool mpirun_flag () const

return mpirunFlag

� bool is_null () const

return dummyFlag

� Real parallel_time () const

returns current MPI wall clock time

� void parallel_configuration_iterator (const ParConfigLIter &pc_iter)

set the current ParallelConfiguration node

� const ParConfigLIter & parallel_configuration_iterator () const

return the current ParallelConfiguration node

� const ParallelConfiguration & parallel_configuration () const

return the current ParallelConfiguration instance

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

346 DAKOTA Class Documentation

� bool parallel_configuration_is_complete ()

identifies if the current ParallelConfiguration has been fully populated

� void increment_parallel_configuration ()

add a new node to parallelConfigurations and increment currPCIter

� void decrement_parallel_configuration ()

decrement currPCIter

� Array � MPI_Comm � analysis_intra_communicators ()

return the set of analysis intra communicators for all parallel configurations (used for setting up direct
simulation interfaces prior to execution time).

Private Member Functions

� void init_communicators (const ParallelLevel &parent_pl, const int &num_servers, const int
&procs_per_server, const int &max_concurrency, const int &asynch_local_concurrency, const
String &default_config, const String &scheduling_override)

split a parent communicator into child server communicators

� void free_communicators (ParallelLevel &pl)

deallocate intra/inter communicators for a particular ParallelLevel

� bool split_communicator_dedicated_master (const ParallelLevel &parent_pl, ParallelLevel
&child_pl, const int &proc_remainder)

split a parent communicator into a dedicated master processor and num_servers child communicators

� bool split_communicator_peer_partition (const ParallelLevel &parent_pl, ParallelLevel &child_pl,
const int &proc_remainder)

split a parent communicator into num_servers peer child communicators (no dedicated master processor)

� bool resolve_inputs (int &num_servers, int &procs_per_server, const int &avail_procs, int &proc_-
remainder, const int &max_concurrency, const int &capacity_multiplier, const String &default_-
config, const String &scheduling_override)

resolve user inputs into a sensible partitioning scheme

� void send (MPIPackBuffer &send_buff, const int &dest, const int &tag, ParallelLevel &parent_pl,
ParallelLevel &child_pl)

blocking buffer send at the current communication level

� void send (int &send_int, const int &dest, const int &tag, ParallelLevel &parent_pl, ParallelLevel
&child_pl)

blocking integer send at the current communication level

� void isend (MPIPackBuffer &send_buff, const int &dest, const int &tag, MPI_Request &send_req,
ParallelLevel &parent_pl, ParallelLevel &child_pl)

nonblocking buffer send at the current communication level

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.78 ParallelLibrary Class Reference 347

� void isend (int &send_int, const int &dest, const int &tag, MPI_Request &send_req, ParallelLevel
&parent_pl, ParallelLevel &child_pl)

nonblocking integer send at the current communication level

� void recv (MPIUnpackBuffer &recv_buff, const int &source, const int &tag, MPI_Status &status,
ParallelLevel &parent_pl, ParallelLevel &child_pl)

blocking buffer receive at the current communication level

� void recv (int &recv_int, const int &source, const int &tag, MPI_Status &status, ParallelLevel
&parent_pl, ParallelLevel &child_pl)

blocking integer receive at the current communication level

� void irecv (MPIUnpackBuffer &recv_buff, const int &source, const int &tag, MPI_Request &recv_-
req, ParallelLevel &parent_pl, ParallelLevel &child_pl)

nonblocking buffer receive at the current communication level

� void irecv (int &recv_int, const int &source, const int &tag, MPI_Request &recv_req, ParallelLevel
&parent_pl, ParallelLevel &child_pl)

nonblocking integer receive at the current communication level

� void bcast (int &data, const MPI_Comm &comm)

broadcast an integer across a communicator

� void bcast (MPIPackBuffer &send_buff, const MPI_Comm &comm)

send a packed buffer across a communicator using a broadcast

� void bcast (MPIUnpackBuffer &recv_buff, const MPI_Comm &comm)

matching receive for a packed buffer broadcast

� void barrier (const MPI_Comm &comm)

enforce MPI_Barrier on comm

� void reduce_sum (double � local_vals, double � sum_vals, const int &num_vals, const MPI_Comm
&comm)

compute a sum over comm using MPI_Reduce

� void check_error (const String &err_source, const int &err_code)

check the MPI return code and abort if error

Private Attributes

� ofstream output_ofstream

tagged file redirection of stdout

� ofstream error_ofstream

tagged file redirection of stderr

� int worldRank

rank in MPI_COMM_WORLD

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

348 DAKOTA Class Documentation

� int worldSize

size of MPI_COMM_WORLD

� bool mpirunFlag

flag for a parallel mpirun/yod launch

� bool ownMPIFlag

flag for ownership of MPI_Init/MPI_Finalize

� bool dummyFlag

prevents multiple MPI_Finalize calls due to dummy_lib

� bool stdOutputFlag

flags redirection of DAKOTA std output to a file

� bool stdErrorFlag

flags redirection of DAKOTA std error to a file

� Real startCPUTime

start reference for UTILIB CPU timer

� Real startWCTime

start reference for UTILIB wall clock timer

� Real startMPITime

start reference for MPI wall clock timer

� long startClock

start reference for local clock() timer measuring parent+child CPU

� const char � stdOutputFilename

filename for redirection of stdout

� const char � stdErrorFilename

filename for redirection of stderr

� const char � readRestartFilename

input filename for restart

� const char � writeRestartFilename

output filename for restart

� int restartEvals

number of restart evals to read

� List � ParallelLevel � parallelLevels

the complete set of parallelism levels for managing multilevel parallelism among one or more configurations

� List � ParallelConfiguration � parallelConfigurations

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.78 ParallelLibrary Class Reference 349

the set of parallel configurations which manage list iterators for indexing into parallelLevels

� ParLevLIter currPLIter

list iterator identifying the current node in parallelLevels

� ParConfigLIter currPCIter

list iterator identifying the current node in parallelConfigurations

8.78.1 Detailed Description

Class for partitioning multiple levels of parallelism and managing message passing within these levels.

The ParallelLibrary class encapsulates all of the details of performing message passing within multiple
levels of parallelism. It provides functions for partitioning of levels according to user configuration input
and functions for passing messages within and across MPI communicators for each of the parallelism levels.
If support for other message-passing libraries beyond MPI becomes needed (PVM, ...), then ParallelLibrary
would be promoted to a base class with virtual functions to encapsulate the library-specific syntax.

8.78.2 Constructor & Destructor Documentation

8.78.2.1 ParallelLibrary (int & argc, char � � & argv)

stand-alone mode constructor

This constructor is the one used by main.C. It calls MPI_Init conditionally based on whether a parallel
launch is detected.

8.78.2.2 ParallelLibrary ()

library mode constructor

This constructor provides a library mode and is used by the SIERRA Adak application. It does not call
MPI_Init, but rather gathers data from MPI_COMM_WORLD if MPI_Init has been called elsewhere.

8.78.2.3 ParallelLibrary (int dummy)

dummy constructor (used for dummy_lib)

This constructor is used for creation of the global dummy_lib object, which is used to satisfy initialization
requirements when the real ParallelLibrary object is not available.

8.78.3 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

350 DAKOTA Class Documentation

8.78.3.1 void specify_outputs_restart (CommandLineHandler & cmd_line_handler)

specify output streams and restart file(s) using command line inputs (normal mode)

Get the -output, -error, -read_restart, and -write_restart filenames and the -stop_restart limit from the com-
mand line. Defaults for the filenames from the command line handler are NULL for the filenames and 0
for restart_evals if no user specification. Only worldRank==0 has access to command line arguments and
must Bcast this data to all iterator masters.

8.78.3.2 void manage_outputs_restart (const ParallelLevel & pl)

manage output streams and restart file(s) (both modes)

If the user has specified the use of files for DAKOTA standard output and/or standard error, then bind
these filenames to the Cout/Cerr macros. In addition, if concurrent iterators are to be used, create and
tag multiple output streams in order to prevent jumbled output. Manage restart file(s) by processing any
incoming evaluations from an old restart file and by setting up the binary output stream for new evaluations.
Only master iterator processor(s) read & write restart information. This function must follow init_iterator_-
communicators so that restart can be managed properly for concurrent iterator strategies. In the case of
concurrent iterators, each iterator has its own restart file tagged with iterator number.

8.78.3.3 void close_streams ()

close streams, files, and any other services

Close streams associated with manage_outputs and manage_restart and terminate any additional services
that may be active.

8.78.3.4 void init_communicators (const ParallelLevel & parent_pl, const int &
num_servers, const int & procs_per_server, const int & max_concurrency, const
int & asynch_local_concurrency, const String & default_config, const String &
scheduling_override) [private]

split a parent communicator into child server communicators

Split parent communicator into concurrent child server partitions as specified by the passed pa-
rameters. This constructs new child intra-communicators and parent-child inter-communicators.
This function is called from the Strategy constructor for the concurrent iterator level and from
ApplicationInterface::init_communicators() for the concurrent evaluation and concurrent analysis levels.

8.78.3.5 bool resolve_inputs (int & num_servers, int & procs_per_server, const int & avail_procs,
int & proc_remainder, const int & max_concurrency, const int & capacity_multiplier, const
String & default_config, const String & scheduling_override) [private]

resolve user inputs into a sensible partitioning scheme

This function is responsible for the "auto-configure" intelligence of DAKOTA. It resolves a variety of inputs
and overrides into a sensible partitioning configuration for a particular parallelism level. It also handles the
general case in which a user’s specification request does not divide out evenly with the number of available
processors for the level. If num_servers & procs_per_server are both nondefault, then the former takes
precedence.

The documentation for this class was generated from the following files:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.78 ParallelLibrary Class Reference 351

� ParallelLibrary.H
� ParallelLibrary.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

352 DAKOTA Class Documentation

8.79 ParamResponsePair Class Reference

Container class for a variables object, a response object, and an evaluation id.

Public Member Functions

� ParamResponsePair ()

default constructor

� ParamResponsePair (const Variables &vars, const Response &response)

alternate constructor for temporaries

� ParamResponsePair (const Variables &vars, const Response &response, const int id)

standard constructor for history uses

� ParamResponsePair (const ParamResponsePair &pair)

copy constructor

� � ParamResponsePair ()

destructor

� ParamResponsePair & operator= (const ParamResponsePair &pair)

assignment operator

� void read (istream &s)

read a ParamResponsePair object from an istream

� void write (ostream &s) const

write a ParamResponsePair object to an ostream

� void read_annotated (istream &s)

read a ParamResponsePair object in annotated format from an istream

� void write_annotated (ostream &s) const

write a ParamResponsePair object in annotated format to an ostream

� void write_tabular (ostream &s) const

write a ParamResponsePair object in tabular format to an ostream

� void read (BiStream &s)

read a ParamResponsePair object from the binary restart stream

� void write (BoStream &s) const

write a ParamResponsePair object to the binary restart stream

� void read (MPIUnpackBuffer &s)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.79 ParamResponsePair Class Reference 353

read a ParamResponsePair object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a ParamResponsePair object to a packed MPI buffer

� int eval_id () const

return the evaluation identifier

� const Variables & prp_parameters () const

return the parameters object

� const Response & prp_response () const

return the response object

� void prp_response (const Response &response)

set the response object

� const IntArray & active_set_vector () const

return the active set vector from the response object

� void active_set_vector (const IntArray &asv)

set the active set vector in the response object

� const String & interface_id () const

return the interface identifier from the response object

Private Attributes

� Variables prPairParameters

the set of parameters for the function evaluation

� Response prPairResponse

the response set for the function evaluation

� int evalId

the function evaluation identifier (assigned from ApplicationInterface::fnEvalId)

Friends

� bool operator== (const ParamResponsePair &pair1, const ParamResponsePair &pair2)

equality operator

� bool operator!= (const ParamResponsePair &pair1, const ParamResponsePair &pair2)

inequality operator

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

354 DAKOTA Class Documentation

8.79.1 Detailed Description

Container class for a variables object, a response object, and an evaluation id.

ParamResponsePair provides a container class for association of the input for a particular function eval-
uation (a variables object) with the output from this function evaluation (a response object), along with
an evaluation identifier. This container defines the basic unit used in the data_pairs list, in restart
file operations, and in a variety of scheduling algorithm bookkeeping operations. With the advent of
STL, replacement of this class with the pair � � template construct may be possible (using pair � int,
pair � vars,response � � , for example), assuming that deep copies, I/O, alternate constructors, etc., can
be adequately addressed.

8.79.2 Constructor & Destructor Documentation

8.79.2.1 ParamResponsePair (const Variables & vars, const Response & response) [inline]

alternate constructor for temporaries

This constructor can use the standard Variables and Response copy constructors to share representations
since this constructor is used for search_pairs (which are local instantiations that go out of scope prior to
any changes to values; i.e., they are not used for history).

8.79.2.2 ParamResponsePair (const Variables & vars, const Response & response, const int id)
[inline]

standard constructor for history uses

This constructor cannot share representations since it involves a history mechanism (beforeSynchPRPList
or data_pairs). Deep copies must be made.

8.79.3 Member Data Documentation

8.79.3.1 int evalId [private]

the function evaluation identifier (assigned from ApplicationInterface::fnEvalId)

evalId belongs here rather than in Response since some Response objects involve consolidation of several
fn evals (e.g., Model::synchronize_derivatives()). The prPair, on the other hand, is used for storage of all
low level fn evals that get evaluated, so evalId is meaningful.

The documentation for this class was generated from the following files:

� ParamResponsePair.H
� ParamResponsePair.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.80 ParamStudy Class Reference 355

8.80 ParamStudy Class Reference

Class for vector, list, centered, and multidimensional parameter studies.

Inheritance diagram for ParamStudy::

ParamStudy

PStudyDACE

Analyzer

Iterator

Public Member Functions

� ParamStudy (Model &model)

constructor

� � ParamStudy ()

destructor

� void extract_trends ()

Redefines the run_iterator virtual function for the PStudy/DACE branch.

Private Member Functions

� void compute_vector_steps ()

computes stepVector and numSteps from initialPoint, finalPoint, and either numSteps or stepLength (pStudy-
Type is 1 or 2)

� void vector_loop (const RealVector &start, const RealVector &step_vect, const int &num_steps)

performs the parameter study by looping from start in num_steps increments of step_vect. Total number of
evaluations is num_steps + 1.

� void sample (const RealVector &list_of_points)

performs the parameter study by sampling from a list of points

� void centered_loop (const RealVector &start, const Real &percent_delta, const int &deltas_per_-
variable)

performs a number of plus and minus offsets for each parameter centered about start

� void multidim_loop (const IntArray &var_partitions)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

356 DAKOTA Class Documentation

performs vector_loops recursively in multiple dimensions

� void recurse (int nloop, int nindex, IntArray ¤t_index, const IntArray &max_index, const
RealVector &start, const RealVector &step_vect)

used by multidim_loop to enable a variable number of nested loops

Private Attributes

� RealVector listOfPoints

list of evaluation points for the list_parameter_study

� RealVector initialPoint

the starting point for vector and centered parameter studies

� RealVector finalPoint

the ending point for vector_parameter_study (a specification option)

� RealVector stepVector

the n-dimensional increment in vector_parameter_study

� int numSteps

the number of times stepVector is applied in vector_parameter_study

� int pStudyType

internal code for parameter study type: -1 (list), 1,2,3 (different vector specifications), 4 (centered), or 5
(multidim)

� int deltasPerVariable

number of offsets in the plus and the minus direction for each variable in a centered_parameter_study

� bool nestedFlag

flag set by parameter studies which call other parameter studies in loops

� Real stepLength

the Cartesian length of multidimensional steps in vector_parameter_study (a specification option)

� Real percentDelta

size of relative offsets in percent for each variable in a centered_parameter_study

� IntArray variablePartitions

number of partitions for each variable in a multidim_parameter_study

� int psCounter

class-scope counter (needed for asynchronous multidim_loop)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.80 ParamStudy Class Reference 357

8.80.1 Detailed Description

Class for vector, list, centered, and multidimensional parameter studies.

The ParamStudy class contains several algorithms for performing parameter studies of different types. It
is not a wrapper for an external library, rather its algorithms are self-contained. The vector parameter
study steps along an n-dimensional vector from an arbitrary initial point to an arbitrary final point in a
specified number of steps. The centered parameter study performs a number of plus and minus offsets in
each coordinate direction around a center point. A multidimensional parameter study fills an n-dimensional
hypercube based on a specified number of intervals for each dimension. It is a nested study in that it utilizes
the vector parameter study internally as it recurses through the variables. And the list parameter study
provides for a user specification of a list of points to evaluate, which allows general parameter investigations
not fitting the structure of vector, centered, or multidim parameter studies.

The documentation for this class was generated from the following files:

� ParamStudy.H
� ParamStudy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

358 DAKOTA Class Documentation

8.81 ProblemDescDB Class Reference

The database containing information parsed from the DAKOTA input file.

Public Member Functions

� ProblemDescDB (ParallelLibrary ¶llel_lib)

constructor

� � ProblemDescDB ()

destructor

� void manage_inputs (CommandLineHandler &cmd_line_handler)

parses the input file and populates the problem description database. This version reads from the dakota
input filename passed with the "-input" option on the DAKOTA command line.

� void manage_inputs (const char � dakota_input_file)

parses the input file and populates the problem description database. This version reads from the dakota
input filename passed in.

� void check_input ()

verifies that there was at least one of each of the required keywords in the dakota input file. Used by
manage_inputs().

� void set_db_list_nodes (const String &method_tag)

set methodIter based on the method identifier string to activate a particular method specification in method-
List and use pointers from this method specification to set the other list iterators.

� void set_db_list_nodes (const size_t &method_index)

set methodIter based on the active index to activate a particular method specification in methodList and use
pointers from this method specification to set the other list iterators.

� size_t get_db_list_nodes ()

return the index of the active node in methodList

� void set_db_interface_node (const String &interface_tag)

set interfaceIter based on the interface identifier string

� void set_db_responses_node (const String &responses_tag)

set responsesIter based on the responses identifier string

� void set_db_model_type (const String &model_type)

set the model type

� ParallelLibrary & parallel_library () const

return the parallelLib reference

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.81 ProblemDescDB Class Reference 359

� const RealVector & get_drv (const String &entry_name) const

get a RealVector out of the database based on an identifier string

� const IntVector & get_div (const String &entry_name) const

get a IntVector out of the database based on an identifier string

� const IntArray & get_dia (const String &entry_name) const

get a IntArray out of the database based on an identifier string

� const RealMatrix & get_drm (const String &entry_name) const

get a RealMatrix out of the database based on an identifier string

� const RealVectorArray & get_drva (const String &entry_name) const

get a RealVectorArray out of the database based on an identifier string

� const IntList & get_dil (const String &entry_name) const

get a IntList out of the database based on an identifier string

� const StringArray & get_dsa (const String &entry_name) const

get a StringArray out of the database based on an identifier string

� const String2DArray & get_ds2a (const String &entry_name) const

get a String2DArray out of the database based on an identifier string

� const String & get_string (const String &entry_name) const

get a String out of the database based on an identifier string

� const Real & get_real (const String &entry_name) const

get a Real out of the database based on an identifier string

� const int & get_int (const String &entry_name) const

get an int out of the database based on an identifier string

� const short & get_short (const String &entry_name) const

get a short int out of the database based on an identifier string

� const size_t & get_sizet (const String &entry_name) const

get a size_t out of the database based on an identifier string

� const bool & get_bool (const String &entry_name) const

get a bool out of the database based on an identifier string

� void insert_node (const DataStrategy &data_strategy)

set the DataStrategy object

� void insert_node (const DataMethod &data_method)

add a DataMethod object to the methodList

� void insert_node (const DataVariables &data_variables)

add a DataVariables object to the variablesList

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

360 DAKOTA Class Documentation

� void insert_node (const DataInterface &data_interface)

add a DataInterface object to the interfaceList

� void insert_node (const DataResponses &data_responses)

add a DataResponses object to the responsesList

Static Public Member Functions

� void method_kwhandler (const struct FunctionData � parsed_data)

method keyword handler called by IDR when a complete method specification is parsed

� void variables_kwhandler (const struct FunctionData � parsed_data)

variables keyword handler called by IDR when a complete variables specification is parsed

� void interface_kwhandler (const struct FunctionData � parsed_data)

interface keyword handler called by IDR when a complete interface specification is parsed

� void responses_kwhandler (const struct FunctionData � parsed_data)

responses keyword handler called by IDR when a complete responses specification is parsed

� void strategy_kwhandler (const struct FunctionData � parsed_data)

strategy keyword handler called by IDR when a complete strategy specification is parsed

Private Member Functions

� void send_db_buffer ()

MPI send of a large buffer containing strategy specification attributes and all the objects in interfaceList,
variablesList, methodList, and responsesList. Used by manage_inputs().

� void receive_db_buffer ()

MPI receive of a large buffer containing strategy specification attributes and all the objects in interfaceList,
variablesList, methodList, and responsesList. Used by manage_inputs().

� void build_label (String &label, const String &root_label, size_t tag)

create a label by appending tag to root_label

� void build_labels (StringArray &label_array, const String &root_label)

create an array of labels by tagging root_label for each entry in label_array. Uses build_label().

� void build_labels_partial (StringArray &label_array, const String &root_label, size_t start_index,
size_t num_items)

create a partial array of labels by tagging root_label for a subset of entries in label_array. Uses
build_label().

� void set_other_list_nodes ()

convenience function used by set_db_list_nodes(method_tag) and set_db_list_nodes(method_index) to set
the other list iterators once methodIter is set (based on pointers from the method specification).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.81 ProblemDescDB Class Reference 361

Static Private Member Functions

� void idr_kw_id_error (const char � kw)

Error handler for missing required IDR keyword.

� Int idr_find_id (Int � id_pos, const Int cntr, const char � id, const char � � id_list, const char � kw)

Function used by the keyword handlers to return the number of parsed instances of a particular keyword.

� Int � � idr_get_int_table (const struct FunctionData � parsed_data, Int identifier, Int &table_len, Int
num_lists, Int list_entry_len)

Function for creating an IDR table of Ints.

� Real � � idr_get_real_table (const struct FunctionData � parsed_data, Int identifier, Int &table_len,
Int num_lists, Int list_entry_len)

Function for creating an IDR table of Reals.

� char � � � idr_get_string_table (const struct FunctionData � parsed_data, Int identifier, Int &table_len,
Int num_lists, Int list_entry_len)

Function for creating an IDR table of strings.

Private Attributes

� ParallelLibrary & parallelLib

reference to the parallel_lib object passed from main

� DataStrategy strategySpec

the strategy specification (only one allowed) resulting from a call to strategy_kwhandler() or insert_node()

� List � DataMethod � methodList

list of method specifications, one for each call to method_kwhandler() or insert_node()

� List � DataVariables � variablesList

list of variables specifications, one for each call to variables_kwhandler() or insert_node()

� List � DataInterface � interfaceList

list of interface specifications, one for each call to interface_kwhandler() or insert_node()

� List � DataResponses � responsesList

list of responses specifications, one for each call to responses_kwhandler() or insert_node()

� List � DataMethod � ::iterator methodIter

iterator identifying the active list node in methodList

� List � DataVariables � ::iterator variablesIter

iterator identifying the active list node in variablesList

� List � DataInterface � ::iterator interfaceIter

iterator identifying the active list node in interfaceList

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

362 DAKOTA Class Documentation

� List � DataResponses � ::iterator responsesIter

iterator identifying the active list node in responsesList

� size_t strategyCntr

counter for strategy specifications used in check_input

� bool dbLocked

prevents use of get_ � type
�

data retrieval functions prior to a set_db_list_nodes invocation

� bool dummyFlag

prevents multiple deallocations for true DB/dummy_db

Static Private Attributes

� ProblemDescDB � pDDBInstance

pointer to the active object instance used within the static kwhandler functions in order to avoid the need
for static data

� Int � � intTable

integer table populated in idr_get_int_table()

� Real � � realTable

real table populated in idr_get_real_table()

� char � � � stringTable

string table populated in idr_get_string_table()

8.81.1 Detailed Description

The database containing information parsed from the DAKOTA input file.

The ProblemDescDB class is a database for DAKOTA input file data that is populated by the Input Deck
Reader (IDR) parser. When the parser reads a complete keyword (delimited by a newline), it calls the
corresponding kwhandler function from this class which populates a data class object (DataStrategy,
DataMethod, DataVariables, DataInterface, or DataResponses) and, for all cases except strategy, appends
the object to a linked list (methodList, variablesList, interfaceList, or responsesList). No strategy linked
list is used since only one strategy specification is allowed. For information on modifying the input parsing
procedures, refer to Dakota/docs/spec_change_instructions.txt

8.81.2 Member Function Documentation

8.81.2.1 void manage_inputs (CommandLineHandler & cmd_line_handler)

parses the input file and populates the problem description database. This version reads from the dakota
input filename passed with the "-input" option on the DAKOTA command line.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.81 ProblemDescDB Class Reference 363

Manage command line inputs using the CommandLineHandler class and parse the input file using the Input
Deck Reader (IDR) parsing system. IDR populates the ProblemDescDB object with the input file data.

8.81.2.2 void manage_inputs (const char � dakota_input_file)

parses the input file and populates the problem description database. This version reads from the dakota
input filename passed in.

Parse the input file using the Input Deck Reader (IDR) parsing system. IDR populates the ProblemDescDB
object with the input file data.

8.81.2.3 void set_db_model_type (const String & model_type) [inline]

set the model type

Used to avoid recursion in DakotaModel::get_model() by a sub model when get_string("method.model_-
type") is not reset by a sub iterator. Note: if more needs of this type arise, could add set_ � type � member
functions to parallel the existing get_ � type � member functions.

The documentation for this class was generated from the following files:

� ProblemDescDB.H
� ProblemDescDB.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

364 DAKOTA Class Documentation

8.82 PStudyDACE Class Reference

Base class for managing common aspects of parameter studies and design of experiments methods.

Inheritance diagram for PStudyDACE::

PStudyDACE

Analyzer

Iterator

DDACEDesignCompExp FSUDesignCompExp ParamStudy

Protected Member Functions

� PStudyDACE (Model &model)

constructor

� � PStudyDACE ()

destructor

� void run_iterator ()

run the iterator

� const Variables & iterator_variable_results () const

return the final iterator solution (variables)

� const Response & iterator_response_results () const

return the final iterator solution (response)

� void print_iterator_results (ostream &s) const

print the final iterator results

� virtual void extract_trends ()=0

Redefines the run_iterator virtual function for the PStudy/DACE branch.

� void update_best (const RealVector &vars, const Response &response, const int eval_num)

compares current evaluation to best evaluation and updates best

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.82 PStudyDACE Class Reference 365

Protected Attributes

� Variables bestVariables

best variables found during the study

� Response bestResponses

best responses found during the study

� Real bestObjFn

best objective function found during the study

� Real bestConViol

best constraint violations found during the study. In the current approach, constraint violation reduction
takes strict precedence over objective function reduction.

� size_t numObjFns

number of objective functions

� size_t numLSqTerms

number of least squares terms

� size_t numNonlinIneqCons

number of nonlinear inequality constraints

� size_t numNonlinEqCons

number of nonlinear equality constraints

� RealVector multiObjWts

vector of multiobjective weights

� RealVector nonlinIneqLowerBnds

vector of nonlinear inequality constraint lower bounds

� RealVector nonlinIneqUpperBnds

vector of nonlinear inequality constraint upper bounds

� RealVector nonlinEqTargets

vector of nonlinear equality constraint targets

8.82.1 Detailed Description

Base class for managing common aspects of parameter studies and design of experiments methods.

The PStudyDACE base class manages common data and functions, such as those involving the best solu-
tions located during the parameter set evaluations or the printing of final results.

8.82.2 Member Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

366 DAKOTA Class Documentation

8.82.2.1 void run_iterator () [inline, protected, virtual]

run the iterator

This function is the primary run function for the iterator class hierarchy. All derived classes need to redefine
it.

Reimplemented from Iterator.

The documentation for this class was generated from the following files:

� DakotaPStudyDACE.H
� DakotaPStudyDACE.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.83 Response Class Reference 367

8.83 Response Class Reference

Container class for response functions and their derivatives. Response provides the handle class.

Public Member Functions

� Response ()

default constructor

� Response (int num_params, const ProblemDescDB &problem_db)

standard constructor built from problem description database

� Response (int num_params, const IntArray &asv)

alternate constructor using limited data

� Response (const Response &response)

copy constructor

� � Response ()

destructor

� Response operator= (const Response &response)

assignment operator

� size_t num_functions () const

return the number of response functions

� const IntArray & active_set_vector () const

return the active set vector

� void active_set_vector (const IntArray &asv)

set the active set vector

� const String & interface_id () const

return the interface identifier

� void interface_id (const String &id)

set the interface identifier

� const StringArray & fn_tags () const

return the function identifier strings

� void fn_tags (const StringArray &tags)

set the function identifier strings

� const RealVector & function_values () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

368 DAKOTA Class Documentation

return the function values

� void function_values (const RealVector &function_vals)

set the function values

� const RealMatrix & function_gradients () const

return the function gradients

� void function_gradients (const RealMatrix &function_grads)

set the function gradients

� const RealMatrixArray & function_hessians () const

return the function Hessians

� void function_hessians (const RealMatrixArray &function_hessians)

set the function Hessians

� void read (istream &s)

read a response object from an istream

� void write (ostream &s) const

write a response object to an ostream

� void read_annotated (istream &s)

read a response object in annotated format from an istream

� void write_annotated (ostream &s) const

write a response object in annotated format to an ostream

� void read_tabular (istream &s)

read responseRep::functionValues in tabular format from an istream

� void write_tabular (ostream &s) const

write responseRep::functionValues in tabular format to an ostream

� void read (BiStream &s)

read a response object from the binary restart stream

� void write (BoStream &s) const

write a response object to the binary restart stream

� void read (MPIUnpackBuffer &s)

read a response object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

write a response object to a packed MPI buffer

� Response copy () const

a deep copy for use in history mechanisms

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.83 Response Class Reference 369

� int data_size ()

handle class forward to corresponding body class member function

� void read_data (double � response_data)

handle class forward to corresponding body class member function

� void write_data (double � response_data)

handle class forward to corresponding body class member function

� void overlay (const Response &response)

handle class forward to corresponding body class member function

� void copy_results (const Response &response)

handle class forward to corresponding body class member function

� void purge_inactive ()

handle class forward to corresponding body class member function

� void reset ()

handle class forward to corresponding body class member function

� bool is_null () const

function to check responseRep (does this handle contain a body)

Private Attributes

� ResponseRep � responseRep

pointer to the body (handle-body idiom)

Friends

� bool operator== (const Response &resp1, const Response &resp2)

equality operator

� bool operator!= (const Response &resp1, const Response &resp2)

inequality operator

8.83.1 Detailed Description

Container class for response functions and their derivatives. Response provides the handle class.

The Response class is a container class for an abstract set of functions (functionValues) and their first
(functionGradients) and second (functionHessians) derivatives. The functions may involve objective and
constraint functions (optimization data set), least squares terms (parameter estimation data set), or generic
response functions (uncertainty quantification data set). It is not currently part of a class hierarchy, since
the abstraction has been sufficiently general and has not required specialization. For memory efficiency, it
employs the "handle-body idiom" approach to reference counting and representation sharing (see Coplien
"Advanced C++", p. 58), for which Response serves as the handle and ResponseRep serves as the body.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

370 DAKOTA Class Documentation

8.83.2 Constructor & Destructor Documentation

8.83.2.1 Response ()

default constructor

Need a populated problem description database to build a meaningful Response object, so set the response-
Rep=NULL in default constructor for efficiency. This then requires a check on NULL in the copy con-
structor, assignment operator, and destructor.

The documentation for this class was generated from the following files:

� DakotaResponse.H
� DakotaResponse.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.84 ResponseRep Class Reference 371

8.84 ResponseRep Class Reference

Container class for response functions and their derivatives. ResponseRep provides the body class.

Private Member Functions

� ResponseRep ()

default constructor

� ResponseRep (int num_params, const ProblemDescDB &problem_db)

standard constructor built from problem description database

� ResponseRep (int num_params, const IntArray &asv)

alternate constructor using limited data

� � ResponseRep ()

destructor

� void read (istream &s)

read a responseRep object from an istream

� void write (ostream &s) const

write a responseRep object to an ostream

� void read_annotated (istream &s)

read a responseRep object from an istream (annotated format)

� void write_annotated (ostream &s) const

write a responseRep object to an ostream (annotated format)

� void read_tabular (istream &s)

read functionValues from an istream (tabular format)

� void write_tabular (ostream &s) const

write functionValues to an ostream (tabular format)

� void read (BiStream &s)

read a responseRep object from a binary stream

� void write (BoStream &s) const

write a responseRep object to a binary stream

� void read (MPIUnpackBuffer &s)

read a responseRep object from a packed MPI buffer

� void write (MPIPackBuffer &s) const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

372 DAKOTA Class Documentation

write a responseRep object to a packed MPI buffer

� int data_size ()

return the number of doubles active in response. Used for sizing double � response_data arrays passed into
read_data and write_data.

� void read_data (double � response_data)

read from an incoming double � array

� void write_data (double � response_data)

write to an incoming double � array

� void overlay (const Response &response)

add incoming response to functionValues/Gradients/Hessians

� void copy_results (const Response &response)

copy functionValues, functionGradients, & functionHessians data only. Do not copy ASV, tags, id’s, etc.
Used in place of assignment operator for retrieving results data from the data_pairs list without corrupting
other data.

� void purge_inactive ()

Purge extraneous inactive data from the response object.

� void reset ()

resets functionValues, functionGradients, and functionHessians to zero

Private Attributes

� int referenceCount

number of handle objects sharing responseRep

� RealVector functionValues

abstract set of functions

� RealMatrix functionGradients

first derivatives

� RealMatrixArray functionHessians

second derivatives

� IntArray responseASV

Copy of Iterator::activeSetVector needed for operator overloaded I/O.

� StringArray fnTags

function identifiers used to improve output readability

� String interfaceId

the interface used to generate this response object. Used in ParamResponsePair::vars_asv_compare.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.84 ResponseRep Class Reference 373

Friends

� bool operator== (const ResponseRep &rep1, const ResponseRep &rep2)

equality operator

8.84.1 Detailed Description

Container class for response functions and their derivatives. ResponseRep provides the body class.

The ResponseRep class is the "representation" of the response container class. It is the "body" portion of
the "handle-body idiom" (see Coplien "Advanced C++", p. 58). The handle class (Response) provides for
memory efficiency in management of multiple response objects through reference counting and representa-
tion sharing. The body class (ResponseRep) actually contains the response data (functionValues, function-
Gradients, functionHessians, etc.). The representation is hidden in that an instance of ResponseRep may
only be created by Response. Therefore, programmers create instances of the Response handle class, and
only need to be aware of the handle/body mechanisms when it comes to managing shallow copies (shared
representation) versus deep copies (separate representation used for history mechanisms).

8.84.2 Constructor & Destructor Documentation

8.84.2.1 ResponseRep (int num_params, const ProblemDescDB & problem_db) [private]

standard constructor built from problem description database

The standard constructor used by Dakota::ModelRep. An interfaceId identifies a set of results with the
interface used in generating them, which allows vars_asv_compare to prevent duplicate detection on results
from different interfaces.

8.84.2.2 ResponseRep (int num_params, const IntArray & asv) [private]

alternate constructor using limited data

Used for building a response object of the correct size on the fly (e.g., by slave analysis servers performing
execute() on a local_response). fnTags and interfaceId are not needed for this purpose since they’re not
passed in the MPI send/recv buffers (NOTE: if interfaceId becomes needed, it could be set from an AppInt
attribute passed from AppInt::serve()). However, NPSOLOptimizer’s user-defined functions option uses
this constructor to build bestResponses and bestResponses needs fnTags for I/O, so construction of fnTags
has been added.

8.84.3 Member Function Documentation

8.84.3.1 void read (istream & s) [private]

read a responseRep object from an istream

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

374 DAKOTA Class Documentation

ASCII version of read needs capabilities for capturing data omissions or formatting errors (resulting from
user error or asynch race condition) and analysis failures (resulting from nonconvergence, instability, etc.).

8.84.3.2 void write (ostream & s) const [private]

write a responseRep object to an ostream

ASCII version of write.

8.84.3.3 void read_annotated (istream & s) [private]

read a responseRep object from an istream (annotated format)

read_annotated version is used for neutral file translation of restart files. Since objects are built solely from
this data, annotations are used. This version closely mirrors the BiStream version.

8.84.3.4 void write_annotated (ostream & s) const [private]

write a responseRep object to an ostream (annotated format)

write_annotated version is used for neutral file translation of restart files. Since objects need to be build
solely from this data, annotations are used. This version closely mirrors the BoStream version, with the
exception of the use of white space between fields.

8.84.3.5 void read_tabular (istream & s) [private]

read functionValues from an istream (tabular format)

read_tabular is used to read functionValues in tabular format. It is currently only used by Approximation-
Interfaces in reading samples from a file. There is insufficient data in a tabular file to build complete
response objects; rather, the response object must be constructed a priori and then its functionValues can
be set.

8.84.3.6 void write_tabular (ostream & s) const [private]

write functionValues to an ostream (tabular format)

write_tabular is used for output of functionValues in a tabular format for convenience in post-
processing/plotting of DAKOTA results.

8.84.3.7 void read (BiStream & s) [private]

read a responseRep object from a binary stream

Binary version differs from ASCII version in 2 primary ways: (1) it lacks formatting. (2) the Response has
not been sized a priori. In reading data from the binary restart file, a ParamResponsePair was constructed
with its default constructor which called the Response default constructor. Therefore, we must first read
sizing data and resize all of the arrays.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.84 ResponseRep Class Reference 375

8.84.3.8 void write (BoStream & s) const [private]

write a responseRep object to a binary stream

Binary version differs from ASCII version in 2 primary ways: (1) It lacks formatting. (2) In reading data
from the binary restart file, ParamResponsePairs are constructed with their default constructor which calls
the Response default constructor. Therefore, we must first write sizing data so that ResponseRep::read(Bo-
Stream& s) can resize the arrays.

8.84.3.9 void read (MPIUnpackBuffer & s) [private]

read a responseRep object from a packed MPI buffer

UnpackBuffer version differs from BiStream version in the omission of interfaceId and fnTags. Master
processor retains function tags and interface ids and communicates asv and response data only with slaves.

8.84.3.10 void write (MPIPackBuffer & s) const [private]

write a responseRep object to a packed MPI buffer

MPIPackBuffer version differs from BoStream version only in omissions of interfaceId and fnTags. The
master processor retains tags and ids and communicates asv and response data only with slaves.

The documentation for this class was generated from the following files:

� DakotaResponse.H
� DakotaResponse.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

376 DAKOTA Class Documentation

8.85 RespSurf Class Reference

Derived approximation class for polynomial regression.

Inheritance diagram for RespSurf::

RespSurf

Approximation

Public Member Functions

� RespSurf (const ProblemDescDB &problem_db, const size_t &num_acv)

constructor

� � RespSurf ()

destructor

Protected Member Functions

� void find_coefficients ()

Least squares fit to data using a singular value decomposition.

� int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� const RealVector & approximation_coefficients ()

return the coefficient array computed by find_coefficients()

� Real get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

� const RealBaseVector & get_gradient (const RealVector &x)

retrieve the approximate function gradient for a given parameter vector

Private Attributes

� int numCoeffs

number of coefficients used by the polynomial model

� RealVector polyCoeffs

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.85 RespSurf Class Reference 377

vector of polynomial coefficients

� short polyOrder

flag to indicate a linear (value = 1), quadratic (value = 2), or cubic (value = 3) polynomial model

8.85.1 Detailed Description

Derived approximation class for polynomial regression.

The RespSurf class computes a linear, quadratic, or cubic polynomial fit to data. The polynomial has either
n+1 (linear case), (n+1) � (n+2)/2 (quadratic case), or (n

�

3+6n
�

2+11n+6)/6 (cubic case) coefficients for n
variables. A least squares estimation of the polynomial coefficients is performed using LAPACK’S linear
least squares subroutine DGELSS which uses a singular value decomposition method.

The documentation for this class was generated from the following files:

� RespSurf.H
� RespSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

378 DAKOTA Class Documentation

8.86 rSQPOptimizer Class Reference

Inheritance diagram for rSQPOptimizer::

rSQPOptimizer

Optimizer

Minimizer

Iterator

Public Member Functions

� rSQPOptimizer (Model &model)
� int num_objectives () const
� const RealVector & lin_ineq_lb () const
� const RealVector & lin_ineq_ub () const
� const RealVector & nonlin_ineq_lb () const
� const RealVector & nonlin_ineq_ub () const
� const RealVector & lin_eq_targ () const
� const RealVector & nonlin_eq_targ () const
� const RealMatrix & lin_eq_jac () const
� const RealMatrix & lin_ineq_jac () const

Overridden from Optimizer

� void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual
function for the optimizer branch.

Private Attributes

� Model � model_
� NLPInterfacePack::NLPDakota nlp_

8.86.1 Detailed Description

Wrapper class for the rSQP++ optimization library.

The rSQPOptimizer class provides a wrapper for rSQP++, a C++ sequential quadratic programming library
written by Roscoe Bartlett. rSQP++ can currently be used in NAND mode, although use of its SAND

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.86 rSQPOptimizer Class Reference 379

mode for reduced-space SQP is planned. rSQPOptimizer uses a NLPDakota object to perform the function
evaluations.

The user input mappings will ultimately include: max_iterations, convergence_tolerance,
output_verbosity.

The documentation for this class was generated from the following files:

� rSQPOptimizer.H
� rSQPOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

380 DAKOTA Class Documentation

8.87 SGOPTApplication Class Reference

Maps the evaluation functions used by SGOPT algorithms to the DAKOTA evaluation functions.

Public Member Functions

� SGOPTApplication (SGOPTOptimizer � instance, int type)

constructor

� � SGOPTApplication ()

destructor

� int DoEval (OptPoint &pt, OptResponse � response, int synch_flag)

launch a function evaluation either synchronously or asynchronously

� int synchronize ()

blocking retrieval of all pending jobs

� int next_eval (int &id)

nonblocking query and retrieval of a job if completed

� void dakota_asynch_flag (const bool &asynch_flag)

set dakotaModelAsynchFlag

Private Member Functions

� void copy (const Response &, OptResponse &)

copy data from a Response object to an SGOPT OptResponse object

Private Attributes

� SGOPTOptimizer � sgoptOptInstance

pointer to the SGOPTOptimizer instance for access to optimizer data

� IntArray activeSetVector

copy/conversion of the SGOPT request vector

� bool dakotaModelAsynchFlag

a flag for asynchronous DAKOTA evaluations

� ResponseList dakotaResponseList

list of DAKOTA responses returned by synchronize_nowait()

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.87 SGOPTApplication Class Reference 381

� IntList dakotaCompletionList

list of DAKOTA completions returned by synchronize_nowait_completions()

8.87.1 Detailed Description

Maps the evaluation functions used by SGOPT algorithms to the DAKOTA evaluation functions.

SGOPTApplication is a DAKOTA class that is derived from SGOPT’s AppInterface hierarchy. It redefines
a variety of virtual SGOPT functions to use the corresponding DAKOTA functions. This is a more flexible
algorithm library interfacing approach than can be obtained with the function pointer approaches used by
NPSOLOptimizer and SNLLOptimizer.

8.87.2 Member Function Documentation

8.87.2.1 int DoEval (OptPoint & pt, OptResponse � prob_response, int synch_flag)

launch a function evaluation either synchronously or asynchronously

Converts SGOPT variables and request vector to DAKOTA variables and active set vector, performs a
DAKOTA function evaluation with synchronization governed by synch_flag, and then copies the Response
data to the SGOPT response (synchronous) or bookkeeps the SGOPT response object (asynchronous).

8.87.2.2 int synchronize ()

blocking retrieval of all pending jobs

Blocking synchronize of asynchronous DAKOTA jobs followed by conversion of the Response objects to
SGOPT response objects.

8.87.2.3 int next_eval (int & id)

nonblocking query and retrieval of a job if completed

Nonblocking job retrieval. Finds a completion (if available), populates the SGOPT response, and sets id to
the completed job’s id. Else set id = -1.

8.87.2.4 void dakota_asynch_flag (const bool & asynch_flag) [inline]

set dakotaModelAsynchFlag

This function is needed to publish the iterator’s asynchFlag at run time (asynchFlag not available at con-
struction).

The documentation for this class was generated from the following files:

� SGOPTApplication.H
� SGOPTApplication.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

382 DAKOTA Class Documentation

8.88 SGOPTOptimizer Class Reference

Wrapper class for the SGOPT optimization library.

Inheritance diagram for SGOPTOptimizer::

SGOPTOptimizer

Optimizer

Minimizer

Iterator

Public Member Functions

� SGOPTOptimizer (Model &model)

constructor

� � SGOPTOptimizer ()

destructor

� void find_optimum ()

Performs the iterations to determine the optimal solution.

Private Member Functions

� void set_method_options ()

sets options for the methods based on user specifications

Private Attributes

� String exploratoryMoves

user input for desired pattern search algorithm variant

� bool discreteAppFlag

convenience flag for integer vs. real applications

� PM_LCG � linConGenerator

Pointer to random number generator.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.88 SGOPTOptimizer Class Reference 383

� BaseOptimizer � baseOptimizer

Pointer to SGOPT base optimizer object.

� AppInterface � sgoptApplication

pointer to the SGOPTApplication object

� RealOptProblem � realProblem

pointer to RealOptProblem object

� IntOptProblem � intProblem

pointer to IntOptProblem object

� PGAreal � pGARealOptimizer

pointer to PGAreal object

� PGAint � pGAIntOptimizer

pointer to PGAint object

� EPSA � ePSAOptimizer

pointer to EPSA object

� PatternSearch � patternSearchOptimizer

pointer to PatternSearch object

� APPSOpt � aPPSOptimizer

pointer to APPSOpt object

� SWOpt � sWOptimizer

pointer to SWOpt object

� sMCreal � sMCrealOptimizer

pointer to sMCreal object

8.88.1 Detailed Description

Wrapper class for the SGOPT optimization library.

The SGOPTOptimizer class provides a wrapper for SGOPT, a Sandia-developed C++ optimization li-
brary of genetic algorithms, pattern search methods, and other nongradient-based techniques. It uses an
SGOPTApplication object to perform the function evaluations.

The user input mappings are as follows: max_iterations, max_function_evaluations,
convergence_tolerance, solution_accuracy and max_cpu_time are mapped into
SGOPT’s max_iters, max_neval, ftol, accuracy, and max_time data attributes. An output
setting of verbose is passed to SGOPT’s set_output() function and a setting of debug activates out-
put of method initialization and sets the SGOPT debug attribute to 10000. SGOPT methods assume
asynchronous operations whenever the algorithm has independent evaluations which can be performed
simultaneously (implicit parallelism). Therefore, parallel configuration is not mapped into the method,
rather it is used in SGOPTApplication to control whether or not an asynchronous evaluation request from
the method is honored by the model (exception: pattern search exploratory moves is set to best_all for
parallel function evaluations). Refer to [Hart, W.E., 1997] for additional information on SGOPT objects
and controls.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

384 DAKOTA Class Documentation

8.88.2 Constructor & Destructor Documentation

8.88.2.1 SGOPTOptimizer (Model & model)

constructor

The constructor allocates the objects and populates the class member pointer attributes.

8.88.2.2 � SGOPTOptimizer ()

destructor

The destructor deallocates the class member pointer attributes.

8.88.3 Member Function Documentation

8.88.3.1 void find_optimum (void) [virtual]

Performs the iterations to determine the optimal solution.

find_optimum redefines the Optimizer virtual function to perform the optimization using SGOPT. It first
sets up the problem data, then executes minimize() on the SGOPT algorithm, and finally catalogues the
results.

Implements Optimizer.

8.88.3.2 void set_method_options () [private]

sets options for the methods based on user specifications

set_method_options propagates DAKOTA user input to the appropriate SGOPT objects.

8.88.4 Member Data Documentation

8.88.4.1 AppInterface � sgoptApplication [private]

pointer to the SGOPTApplication object

SGOPTApplication is a DAKOTA class derived from the SGOPT AppInterface class. It redefines the
virtual SGOPT evaluation functions to use DAKOTA evaluation functions.

The documentation for this class was generated from the following files:

� SGOPTOptimizer.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.88 SGOPTOptimizer Class Reference 385

� SGOPTOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

386 DAKOTA Class Documentation

8.89 SingleMethodStrategy Class Reference

Simple fall-through strategy for running a single iterator on a single model.

Inheritance diagram for SingleMethodStrategy::

SingleMethodStrategy

Strategy

Public Member Functions

� SingleMethodStrategy (ProblemDescDB &problem_db)

constructor

� � SingleMethodStrategy ()

destructor

� void run_strategy ()

Perform the strategy by executing selectedIterator on userDefinedModel.

� const Variables & strategy_variable_results () const

return the final solution from selectedIterator (variables)

� const Response & strategy_response_results () const

return the final solution from selectedIterator (response)

� IteratorList & iterators (bool recurse_flag=true)

returns selectedIterator and any subordinate iterators

� ModelList & models (bool recurse_flag=true)

returns userDefinedModel and any subordinate models

Private Attributes

� Model userDefinedModel

the model to be iterated

� Iterator selectedIterator

the iterator

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.89 SingleMethodStrategy Class Reference 387

8.89.1 Detailed Description

Simple fall-through strategy for running a single iterator on a single model.

This strategy executes a single iterator on a single model. Since it does not provide coordination for
multiple iterators and models, it can considered to be a "fall-through" strategy in that it allows control to
fall through immediately to the iterator.

The documentation for this class was generated from the following files:

� SingleMethodStrategy.H
� SingleMethodStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

388 DAKOTA Class Documentation

8.90 SingleModel Class Reference

Derived model class which utilizes a single interface to map variables into responses.

Inheritance diagram for SingleModel::

SingleModel

Model

Public Member Functions

� SingleModel (ProblemDescDB &problem_db)

constructor

� � SingleModel ()

destructor

Protected Member Functions

� Interface & interface ()

return userDefinedInterface

� void derived_compute_response (const IntArray &asv)

portion of compute_response() specific to SingleModel (invokes a synchronous map() on userDefined-
Interface)

� void derived_asynch_compute_response (const IntArray &asv)

portion of asynch_compute_response() specific to SingleModel (invokes an asynchronous map() on user-
DefinedInterface)

� const ResponseArray & derived_synchronize ()

portion of synchronize() specific to SingleModel (invokes synch() on userDefinedInterface)

� const ResponseList & derived_synchronize_nowait ()

portion of synchronize_nowait() specific to SingleModel (invokes synch_nowait() on userDefinedInterface)

� const IntList & synchronize_nowait_completions ()

return completion id’s matching response list from synchronize_nowait (request forwarded to userDefined-
Interface)

� void component_parallel_mode (int mode)

SingleModel only supports parallelism in userDefinedInterface, so this virtual function redefinition is simply
a sanity check.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.90 SingleModel Class Reference 389

� String local_eval_synchronization ()

return userDefinedInterface synchronization setting

� int local_eval_concurrency ()

return userDefinedInterface asynchronous evaluation concurrency

� bool derived_master_overload () const

flag which prevents overloading the master with a multiprocessor evaluation (request forwarded to user-
DefinedInterface)

� void derived_init_communicators (const int &max_iterator_concurrency)

set up SingleModel for parallel operations (request forwarded to userDefinedInterface)

� void derived_init_serial ()

set up SingleModel for serial operations (request forwarded to userDefinedInterface).

� void reset_communicators ()

reset communicator partition data for the SingleModel (request forwarded to userDefinedInterface)

� void free_communicators ()

deallocate communicator partitions for the SingleModel (request forwarded to userDefinedInterface)

� void serve ()

Service userDefinedInterface job requests received from the master. Completes when a termination message
is received from stop_servers().

� void stop_servers ()

executed by the master to terminate userDefinedInterface server operations when SingleModel iteration is
complete.

� int total_eval_counter () const

return the total evaluation count for the SingleModel (request forwarded to userDefinedInterface)

� int new_eval_counter () const

return the new evaluation count for the SingleModel (request forwarded to userDefinedInterface)

Private Attributes

� Interface userDefinedInterface

the interface used for mapping variables to responses

8.90.1 Detailed Description

Derived model class which utilizes a single interface to map variables into responses.

The SingleModel class is the simplest of the derived model classes. It provides the capabilities the old
Model class, prior to the development of layered and nested model extensions. The derived response
computation and synchronization functions utilize a single interface to perform the function evaluations.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

390 DAKOTA Class Documentation

The documentation for this class was generated from the following files:

� SingleModel.H
� SingleModel.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.91 SNLLBase Class Reference 391

8.91 SNLLBase Class Reference

Base class for OPT++ optimization and least squares methods.

Inheritance diagram for SNLLBase::

SNLLBase

SNLLLeastSq SNLLOptimizer

Public Member Functions

� SNLLBase ()

default constructor

� SNLLBase (Model &model)

standard constructor

� � SNLLBase ()

destructor

Protected Member Functions

� void copy_con_vals (const RealVector &local_fn_vals, ColumnVector &g, const size_t &offset)

convenience function for copying local_fn_vals to g; used by constraint evaluator functions

� void copy_con_vals (const ColumnVector &g, RealVector &local_fn_vals, const size_t &offset)

convenience function for copying g to local_fn_vals; used in final solution logging

� void copy_con_grad (const RealMatrix &local_fn_grads,::Matrix &grad_g, const size_t &offset)

convenience function for copying local_fn_grads to grad_g; used by constraint evaluator functions

� void copy_con_hess (const RealMatrixArray &local_fn_hessians, OptppArray � SymmetricMatrix
� &hess_g, const size_t &offset)

convenience function for copying local_fn_hessians to hess_g; used by constraint evaluator functions

� void pre_instantiate (const String &merit_fn, bool bound_constr_flag, const int &num_constr)

convenience function for setting OPT++ options prior to the method instantiation

� void post_instantiate (const int &num_cv, bool vendor_num_grad_flag, const String &finite_diff_-
type, const Real &fdss, const int &max_iter, const int &max_fn_evals, const Real &conv_tol,
const Real &grad_tol, const Real &max_step, bool bound_constr_flag, const int &num_constr, bool
debug_output, OptimizeClass � the_optimizer, NLP0 � nlf_objective, FDNLF1 � fd_nlf1, FDNLF1

� fd_nlf1_con)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

392 DAKOTA Class Documentation

convenience function for setting OPT++ options after the method instantiation

� void pre_run (NLP0 � nlf_objective, NLP � nlp_constraint, const RealVector &init_pt, const
RealVector &lower_bnds, const RealVector &upper_bnds, const RealMatrix &lin_ineq_coeffs, const
RealVector &lin_ineq_l_bnds, const RealVector &lin_ineq_u_bnds, const RealMatrix &lin_eq_-
coeffs, const RealVector &lin_eq_targets, const RealVector &nln_ineq_l_bnds, const RealVector
&nln_ineq_u_bnds, const RealVector &nln_eq_targets)

convenience function for OPT++ configuration prior to the method invocation

� void post_run (NLP0 � nlf_objective)

convenience function for setting OPT++ options after the method instantiations

Static Protected Member Functions

� void init_fn (int n, ColumnVector &x)

An initialization mechanism provided by OPT++ (not currently used).

Protected Attributes

� String searchMethod

value_based_line_search, gradient_based_line_search, trust_region, or tr_pds

� SearchStrategy searchStrat

enum: LineSearch, TrustRegion, or TrustPDS

� MeritFcn meritFn

enum: NormFmu, ArgaezTapia, or VanShanno

� bool constantASVFlag

flags a user selection of active_set_vector == constant. By mapping this into mode override, reliance on
duplicate detection can be avoided.

Static Protected Attributes

� Minimizer � optLSqInstance

pointer to the active base class object instance used within the static evaluator functions in order to avoid
the need for static data

� bool modeOverrideFlag

flags OPT++ mode override (for combining value, gradient, and Hessian requests)

� EvalType lastFnEvalLocn

an enum used to track whether an nlf evaluator or a constraint evaluator was the last location of a function
evaluation

� int lastEvalMode

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.91 SNLLBase Class Reference 393

copy of mode from constraint evaluators

� RealVector lastEvalVars

copy of variables from constraint evaluators

8.91.1 Detailed Description

Base class for OPT++ optimization and least squares methods.

The SNLLBase class provides a common base class for SNLLOptimizer and SNLLLeastSq, both of which
are wrappers for OPT++, a C++ optimization library from the Computational Sciences and Mathematics
Research (CSMR) department at Sandia’s Livermore CA site.

The documentation for this class was generated from the following files:

� SNLLBase.H
� SNLLBase.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

394 DAKOTA Class Documentation

8.92 SNLLLeastSq Class Reference

Wrapper class for the OPT++ optimization library.

Inheritance diagram for SNLLLeastSq::

SNLLLeastSq

LeastSq SNLLBase

Minimizer

Iterator

Public Member Functions

� SNLLLeastSq (Model &model)

constructor

� � SNLLLeastSq ()

destructor

� void minimize_residuals ()

Performs the iterations to determine the least squares solution.

Static Private Member Functions

� void nlf2_evaluator_gn (int mode, int n, const ColumnVector &x, Real &f, ColumnVector &grad_f,
SymmetricMatrix &hess_f, int &result_mode)

objective function evaluator function which obtains values and gradients for least square terms and com-
putes objective function value, gradient, and Hessian using the Gauss-Newton approximation.

� void constraint1_evaluator_gn (int mode, int n, const ColumnVector &x, ColumnVector &g,::Matrix
&grad_g, int &result_mode)

constraint evaluator function which provides constraint values and gradients to OPT++ Gauss-Newton
methods.

� void constraint2_evaluator_gn (int mode, int n, const ColumnVector &x, ColumnVector &g,::Matrix
&grad_g, OptppArray � SymmetricMatrix � &hess_g, int &result_mode)

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ Gauss-
Newton methods.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.92 SNLLLeastSq Class Reference 395

Private Attributes

� NLP0 � nlfObjective

objective NLF base class pointer

� NLP0 � nlfConstraint

constraint NLF base class pointer

� NLP � nlpConstraint

constraint NLP pointer

� NLF2 � nlf2

pointer to objective NLF for full Newton optimizers

� NLF2 � nlf2Con

pointer to constraint NLF for full Newton optimizers

� NLF1 � nlf1Con

pointer to constraint NLF for Quasi Newton optimizers

� OptimizeClass � theOptimizer

optimizer base class pointer

� OptNewton � optnewton

Newton optimizer pointer.

� OptBCNewton � optbcnewton

Bound constrained Newton optimizer pointer.

� OptDHNIPS � optdhnips

Disaggregated Hessian NIPS optimizer ptr.

Static Private Attributes

� SNLLLeastSq � snllLSqInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for
static data

8.92.1 Detailed Description

Wrapper class for the OPT++ optimization library.

The SNLLLeastSq class provides a wrapper for OPT++, a C++ optimization library of nonlinear program-
ming and pattern search techniques from the Computational Sciences and Mathematics Research (CSMR)
department at Sandia’s Livermore CA site. It uses a function pointer approach for which passed func-
tions must be either global functions or static member functions. Any attribute used within static member
functions must be either local to that function, a static member, or accessed by static pointer.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

396 DAKOTA Class Documentation

The user input mappings are as follows: max_iterations, max_function_evaluations,
convergence_tolerance, max_step, gradient_tolerance, search_method, and
search_scheme_size are set using OPT++’s setMaxIter(), setMaxFeval(), setFcnTol(), setMaxStep(),
setGradTol(), setSearchStrategy(), and setSSS() member functions, respectively; output verbosity is used
to toggle OPT++’s debug mode using the setDebug() member function. Internal to OPT++, there are
3 search strategies, while the DAKOTA search_method specification supports 4 (value_based_-
line_search, gradient_based_line_search, trust_region, or tr_pds). The difference
stems from the "is_expensive" flag in OPT++. If the search strategy is LineSearch and "is_expensive" is
turned on, then the value_based_line_search is used. Otherwise (the "is_expensive" default is
off), the algorithm will use the gradient_based_line_search. Refer to [Meza, J.C., 1994] and
to the OPT++ source in the Dakota/VendorOptimizers/opt++ directory for information on OPT++ class
member functions.

8.92.2 Member Function Documentation

8.92.2.1 void nlf2_evaluator_gn (int mode, int n, const ColumnVector & x, Real & f, ColumnVector
& grad_f, SymmetricMatrix & hess_f, int & result_mode) [static, private]

objective function evaluator function which obtains values and gradients for least square terms and com-
putes objective function value, gradient, and Hessian using the Gauss-Newton approximation.

This nlf2 evaluator function is used for the Gauss-Newton method in order to exploit the special structure of
the nonlinear least squares problem. Here, fx = sum (T_i - Tbar_i)

�

2 and Response is made up of residual
functions and their gradients along with any nonlinear constraints. The objective function and its gradient
vector and Hessian matrix are computed directly from the residual functions and their derivatives (which
are returned from the Response object).

8.92.2.2 void constraint1_evaluator_gn (int mode, int n, const ColumnVector & x, ColumnVector
& g, ::Matrix & grad_g, int & result_mode) [static, private]

constraint evaluator function which provides constraint values and gradients to OPT++ Gauss-Newton
methods.

While it does not employ the Gauss-Newton approximation, it is distinct from constraint1_evaluator() due
to its need to anticipate the required modes for the least squares terms. This constraint evaluator function
is used with diaggregated Hessian NIPS and is currently active.

8.92.2.3 void constraint2_evaluator_gn (int mode, int n, const ColumnVector & x, ColumnVector
& g, ::Matrix & grad_g, OptppArray � SymmetricMatrix � & hess_g, int & result_mode)
[static, private]

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ Gauss-
Newton methods.

While it does not employ the Gauss-Newton approximation, it is distinct from constraint2_evaluator() due
to its need to anticipate the required modes for the least squares terms. This constraint evaluator function
is used with full Newton NIPS and is currently inactive.

The documentation for this class was generated from the following files:

� SNLLLeastSq.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.92 SNLLLeastSq Class Reference 397

� SNLLLeastSq.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

398 DAKOTA Class Documentation

8.93 SNLLOptimizer Class Reference

Wrapper class for the OPT++ optimization library.

Inheritance diagram for SNLLOptimizer::

SNLLOptimizer

Optimizer SNLLBase

Minimizer

Iterator

Public Member Functions

� SNLLOptimizer (Model &model)

standard constructor

� SNLLOptimizer (const RealVector &initial_point, const RealVector &var_lower_bnds, const
RealVector &var_upper_bnds, int num_lin_ineq, int num_lin_eq, int num_nln_ineq, int num_nln_-
eq, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lower_bnds, const RealVector
&lin_ineq_upper_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_targets,
const RealVector &nonlin_ineq_lower_bnds, const RealVector &nonlin_ineq_upper_bnds, const
RealVector &nonlin_eq_targets, void(� user_obj_eval)(int mode, int n, const ColumnVector &x,
Real &f, ColumnVector &grad_f, int &result_mode), void(� user_con_eval)(int mode, int n, const
ColumnVector &x, ColumnVector &g,::Matrix &grad_g, int &result_mode))

alternate constructor for instantiations "on the fly"

� � SNLLOptimizer ()

destructor

� void find_optimum ()

Performs the iterations to determine the optimal solution.

Static Private Member Functions

� void nlf0_evaluator (int n, const ColumnVector &x, Real &f, int &result_mode)

objective function evaluator function for OPT++ methods which require only function values.

� void nlf1_evaluator (int mode, int n, const ColumnVector &x, Real &f, ColumnVector &grad_f, int
&result_mode)

objective function evaluator function which provides function values and gradients to OPT++ methods.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.93 SNLLOptimizer Class Reference 399

� void nlf2_evaluator (int mode, int n, const ColumnVector &x, Real &f, ColumnVector &grad_f,
SymmetricMatrix &hess_f, int &result_mode)

objective function evaluator function which provides function values, gradients, and Hessians to OPT++
methods.

� void constraint0_evaluator (int n, const ColumnVector &x, ColumnVector &g, int &result_mode)

constraint evaluator function for OPT++ methods which require only constraint values.

� void constraint1_evaluator (int mode, int n, const ColumnVector &x, ColumnVector &g,::Matrix
&grad_g, int &result_mode)

constraint evaluator function which provides constraint values and gradients to OPT++ methods.

� void constraint2_evaluator (int mode, int n, const ColumnVector &x, ColumnVector &g,::Matrix
&grad_g, OptppArray � SymmetricMatrix � &hess_g, int &result_mode)

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ meth-
ods.

Private Attributes

� NLP0 � nlfObjective

objective NLF base class pointer

� NLP0 � nlfConstraint

constraint NLF base class pointer

� NLP � nlpConstraint

constraint NLP pointer

� NLF0 � nlf0

pointer to objective NLF for nongradient optimizers

� NLF1 � nlf1

pointer to objective NLF for (analytic) gradient-based optimizers

� NLF1 � nlf1Con

pointer to constraint NLF for (analytic) gradient-based optimizers

� FDNLF1 � fdnlf1

pointer to objective NLF for (finite diff) gradient-based optimizers

� FDNLF1 � fdnlf1Con

pointer to constraint NLF for (finite diff) gradient-based optimizers

� NLF2 � nlf2

pointer to objective NLF for full Newton optimizers

� NLF2 � nlf2Con

pointer to constraint NLF for full Newton optimizers

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

400 DAKOTA Class Documentation

� OptimizeClass � theOptimizer

optimizer base class pointer

� OptPDS � optpds

PDS optimizer pointer.

� OptCG � optcg

CG optimizer pointer.

� OptLBFGS � optlbfgs

L-BFGS optimizer pointer.

� OptNewton � optnewton

Newton optimizer pointer.

� OptQNewton � optqnewton

Quasi-Newton optimizer pointer.

� OptFDNewton � optfdnewton

Finite Difference Newton optimizer pointer.

� OptBCNewton � optbcnewton

Bound constrained Newton optimizer pointer.

� OptBCQNewton � optbcqnewton

Bnd constrained Quasi-Newton optimizer ptr.

� OptBCFDNewton � optbcfdnewton

Bnd constrained FD-Newton optimizer ptr.

� OptNIPS � optnips

NIPS optimizer pointer.

� OptQNIPS � optqnips

Quasi-Newton NIPS optimizer pointer.

� OptFDNIPS � optfdnips

Finite Difference NIPS optimizer pointer.

� String setUpType

flag for iteration mode: "model" (normal usage) or "user_functions" (user-supplied functions mode for "on
the fly" instantiations). NonDReliability currently uses the user_functions mode.

� RealVector initialPoint

holds initial point passed in for "user_functions" mode.

� RealVector lowerBounds

holds variable lower bounds passed in for "user_functions" mode.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.93 SNLLOptimizer Class Reference 401

� RealVector upperBounds

holds variable upper bounds passed in for "user_functions" mode.

Static Private Attributes

� SNLLOptimizer � snllOptInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for
static data

8.93.1 Detailed Description

Wrapper class for the OPT++ optimization library.

The SNLLOptimizer class provides a wrapper for OPT++, a C++ optimization library of nonlinear pro-
gramming and pattern search techniques from the Computational Sciences and Mathematics Research
(CSMR) department at Sandia’s Livermore CA site. It uses a function pointer approach for which passed
functions must be either global functions or static member functions. Any attribute used within static
member functions must be either local to that function, a static member, or accessed by static pointer.

The user input mappings are as follows: max_iterations, max_function_evaluations,
convergence_tolerance, max_step, gradient_tolerance, search_method, and
search_scheme_size are set using OPT++’s setMaxIter(), setMaxFeval(), setFcnTol(), setMaxStep(),
setGradTol(), setSearchStrategy(), and setSSS() member functions, respectively; output verbosity is used
to toggle OPT++’s debug mode using the setDebug() member function. Internal to OPT++, there are
3 search strategies, while the DAKOTA search_method specification supports 4 (value_based_-
line_search, gradient_based_line_search, trust_region, or tr_pds). The difference
stems from the "is_expensive" flag in OPT++. If the search strategy is LineSearch and "is_expensive" is
turned on, then the value_based_line_search is used. Otherwise (the "is_expensive" default is
off), the algorithm will use the gradient_based_line_search. Refer to [Meza, J.C., 1994] and
to the OPT++ source in the Dakota/VendorOptimizers/opt++ directory for information on OPT++ class
member functions.

8.93.2 Constructor & Destructor Documentation

8.93.2.1 SNLLOptimizer (Model & model)

standard constructor

This constructor is used for normal instantiations using data from the ProblemDescDB.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

402 DAKOTA Class Documentation

8.93.2.2 SNLLOptimizer (const RealVector & initial_point, const RealVector & var_lower_bnds,
const RealVector & var_upper_bnds, int num_lin_ineq, int num_lin_eq, int
num_nln_ineq, int num_nln_eq, const RealMatrix & lin_ineq_coeffs, const
RealVector & lin_ineq_lower_bnds, const RealVector & lin_ineq_upper_bnds, const
RealMatrix & lin_eq_coeffs, const RealVector & lin_eq_targets, const RealVector &
nonlin_ineq_lower_bnds, const RealVector & nonlin_ineq_upper_bnds, const RealVector
& nonlin_eq_targets, void(� user_obj_eval)(int mode, int n, const ColumnVector &x, Real
&f, ColumnVector &grad_f, int &result_mode), void(� user_con_eval)(int mode, int n,
const ColumnVector &x, ColumnVector &g,::Matrix &grad_g, int &result_mode))

alternate constructor for instantiations "on the fly"

This is an alternate constructor for performing an optimization using the passed in objective function and
constraint function pointers.

8.93.3 Member Function Documentation

8.93.3.1 void nlf0_evaluator (int n, const ColumnVector & x, Real & f, int & result_mode)
[static, private]

objective function evaluator function for OPT++ methods which require only function values.

For use when DAKOTA computes f and gradients are not directly available. This is used by nongradient-
based optimizers such as PDS and by gradient-based optimizers in vendor numerical gradient mode
(opt++’s internal finite difference routine is used).

8.93.3.2 void nlf1_evaluator (int mode, int n, const ColumnVector & x, Real & f, ColumnVector &
grad_f, int & result_mode) [static, private]

objective function evaluator function which provides function values and gradients to OPT++ methods.

For use when DAKOTA computes f and df/dX (regardless of gradientType). Vendor numerical gradient
case is handled by nlf0_evaluator.

8.93.3.3 void nlf2_evaluator (int mode, int n, const ColumnVector & x, Real & f, ColumnVector &
grad_f, SymmetricMatrix & hess_f, int & result_mode) [static, private]

objective function evaluator function which provides function values, gradients, and Hessians to OPT++
methods.

For use when DAKOTA receives f, df/dX, & d
�

2f/dx
�

2 from the ApplicationInterface (analytic only).
Finite differencing does not make sense for a full Newton approach, since lack of analytic gradients &
Hessian should dictate the use of quasi-newton or fd-newton. Thus, there is no fdnlf2_evaluator for use
with full Newton approaches, since it is preferable to use quasi-newton or fd-newton with nlf1. Gauss-
Newton does not fit this model; it uses nlf2_evaluator_gn instead of nlf2_evaluator.

8.93.3.4 void constraint0_evaluator (int n, const ColumnVector & x, ColumnVector & g, int &
result_mode) [static, private]

constraint evaluator function for OPT++ methods which require only constraint values.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.93 SNLLOptimizer Class Reference 403

For use when DAKOTA computes g and gradients are not directly available. This is used by nongradient-
based optimizers and by gradient-based optimizers in vendor numerical gradient mode (opt++’s internal
finite difference routine is used).

8.93.3.5 void constraint1_evaluator (int mode, int n, const ColumnVector & x, ColumnVector & g,
::Matrix & grad_g, int & result_mode) [static, private]

constraint evaluator function which provides constraint values and gradients to OPT++ methods.

For use when DAKOTA computes g and dg/dX (regardless of gradientType). Vendor numerical gradient
case is handled by constraint0_evaluator.

8.93.3.6 void constraint2_evaluator (int mode, int n, const ColumnVector & x, ColumnVector & g,
::Matrix & grad_g, OptppArray � SymmetricMatrix � & hess_g, int & result_mode)
[static, private]

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ methods.

For use when DAKOTA computes g, dg/dX, & d
�

2g/dx
�

2 (analytic only).

The documentation for this class was generated from the following files:

� SNLLOptimizer.H
� SNLLOptimizer.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

404 DAKOTA Class Documentation

8.94 SOLBase Class Reference

Base class for Stanford SOL software.

Inheritance diagram for SOLBase::

SOLBase

NLSSOLLeastSq NPSOLOptimizer

Public Member Functions

� SOLBase ()

default constructor

� SOLBase (Model &model)

standard constructor

� � SOLBase ()

destructor

Protected Member Functions

� void allocate_arrays (const int &num_cv, const size_t &num_nln_ineq_con, const size_t &num_-
nln_eq_con, const size_t &num_lin_ineq_con, const size_t &num_lin_eq_con, const RealMatrix
&lin_ineq_coeffs, const RealMatrix &lin_eq_coeffs)

Allocates miscellaneous arrays for the SOL algorithms.

� void deallocate_arrays ()

Deallocates memory previously allocated by allocate_arrays().

� void allocate_workspace (const int &num_cv, const int &num_nln_con, const int &num_lin_con,
const int &num_lsq)

Allocates real and integer workspaces for the SOL algorithms.

� void set_options (bool speculative_flag, bool vendor_num_grad_flag, bool verbose_output, const
int &verify_lev, const Real &fn_prec, const Real &linesrch_tol, const int &max_iter, const Real
&constr_tol, const Real &conv_tol, const String &grad_type, const Real &fdss)

Sets SOL method options using calls to npoptn2.

� void augment_bounds (RealVector &augmented_l_bnds, RealVector &augmented_u_bnds, const
RealVector &lin_ineq_l_bnds, const RealVector &lin_ineq_u_bnds, const RealVector &lin_eq_-
targets, const RealVector &nln_ineq_l_bnds, const RealVector &nln_ineq_u_bnds, const RealVector
&nln_eq_targets)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.94 SOLBase Class Reference 405

augments variable bounds with linear and nonlinear constraint bounds.

Static Protected Member Functions

� void constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int � needc, double � x, double � c,
double � cjac, int &nstate)

CONFUN in NPSOL manual: computes the values and first derivatives of the nonlinear constraint func-
tions.

Protected Attributes

� int realWorkSpaceSize

size of realWorkSpace

� int intWorkSpaceSize

size of intWorkSpace

� RealArray realWorkSpace

real work space for NPSOL/NLSSOL

� IntArray intWorkSpace

int work space for NPSOL/NLSSOL

� int nlnConstraintArraySize

used for non-zero array sizing (nonlinear constraints)

� int linConstraintArraySize

used for non-zero array sizing (linear constraints)

� RealArray cLambda

CLAMBDA from NPSOL manual: Langrange multipliers.

� IntArray constraintState

ISTATE from NPSOL manual: constraint status.

� int informResult

INFORM from NPSOL manual: optimization status on exit.

� int numberIterations

ITER from NPSOL manual: number of (major) iterations performed.

� int boundsArraySize

length of augmented bounds arrays (variable bounds plus linear and nonlinear constraint bounds)

� double � linConstraintMatrixF77

[A] matrix from NPSOL manual: linear constraint coefficients

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

406 DAKOTA Class Documentation

� double � upperFactorHessianF77

[R] matrix from NPSOL manual: upper Cholesky factor of the Hessian of the Lagrangian.

� double � constraintJacMatrixF77

[CJAC] matrix from NPSOL manual: nonlinear constraint Jacobian

� int fnEvalCntr

counter for testing against maxFunctionEvals

� size_t constrOffset

used in constraint_eval() to bridge NLSSOLLeastSq::numLeastSqTerms and
NPSOLOptimizer::numObjectiveFunctions

Static Protected Attributes

� SOLBase � solInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for
static data

� Minimizer � optLSqInstance

pointer to the active base class object instance used within the static evaluator functions in order to avoid
the need for static data

8.94.1 Detailed Description

Base class for Stanford SOL software.

The SOLBase class provides a common base class for NPSOLOptimizer and NLSSOLLeastSq, both of
which are Fortran 77 sequential quadratic programming algorithms from Stanford University marketed by
Stanford Business Associates.

The documentation for this class was generated from the following files:

� SOLBase.H
� SOLBase.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.95 SortCompare Class Template Reference 407

8.95 SortCompare Class Template Reference

Public Member Functions

� SortCompare (bool(� func)(const T &, const T &))

Constructor that defines the pointer to function.

� bool operator() (const T &p1, const T &p2) const

The operator() must be defined. Calls the defined sortFunction.

Private Attributes

� bool(� sortFunction)(const T &, const T &)

Pointer to test function.

8.95.1 Detailed Description

template � class T � class Dakota::SortCompare � T �

Internal functor used in the sort algorithm to sort using a specified compare method. The class holds a
pointer to the sort function.

The documentation for this class was generated from the following file:

� DakotaList.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

408 DAKOTA Class Documentation

8.96 Strategy Class Reference

Base class for the strategy class hierarchy.

Inheritance diagram for Strategy::

Strategy

BranchBndStrategy ConcurrentStrategy MultilevelOptStrategy NonDOptStrategy SingleMethodStrategy SurrBasedOptStrategy

Public Member Functions

� Strategy ()

default constructor

� Strategy (ProblemDescDB &problem_db)

envelope constructor

� Strategy (const Strategy &strat)

copy constructor

� virtual � Strategy ()

destructor

� Strategy operator= (const Strategy &strat)

assignment operator

� virtual void run_strategy ()

the run function for the strategy: invoke the iterator(s) on the model(s). Called from main.C.

� virtual const Variables & strategy_variable_results () const

return the final strategy solution (variables)

� virtual const Response & strategy_response_results () const

return the final strategy solution (response)

� virtual IteratorList & iterators (bool recurse_flag=true)

recurse through nestings/layerings and return all Iterators used in the strategy

� virtual ModelList & models (bool recurse_flag=true)

recurse through nestings/layerings and return all Models used in the strategy

� void run_iterator (Iterator &the_iterator, Model &the_model)

Convenience function for invoking an iterator and managing parallelism. This version omits communicator
repartitioning. Function must be public due to use by MINLPNode.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.96 Strategy Class Reference 409

� ProblemDescDB & prob_desc_db () const

returns the problem description database (probDescDB)

� ParallelLibrary & parallel_library () const

returns the parallel library (parallelLib)

Protected Member Functions

� Strategy (BaseConstructor, ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

� void init_communicators (Iterator &the_iterator, Model &the_model)

convenience function for allocating comms prior to running an iterator

� void free_communicators (Model &the_model)

convenience function for deallocating comms after running an iterator

� void initialize_graphics (const Model &model)

convenience function for initialization of 2D graphics and data tabulation

Protected Attributes

� ProblemDescDB & probDescDB

class member reference to the problem description database

� ParallelLibrary & parallelLib

class member reference to the parallel library

� String strategyName

type of strategy: single_method, multi_level, surrogate_based_opt, opt_under_uncertainty, branch_and_-
bound, multi_start, or pareto_set.

� int worldRank

processor rank in MPI_COMM_WORLD

� int worldSize

size of MPI_COMM_WORLD

� int iteratorCommRank

processor rank in iteratorComm

� int iteratorCommSize

number of processors in iteratorComm

� bool mpirunFlag

flag for parallel MPI launch of DAKOTA

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

410 DAKOTA Class Documentation

� bool graphicsFlag

flag for using graphics in a graphics executable

� bool tabularDataFlag

flag for file tabulation of graphics data

� String tabularDataFile

filename for tabulation of graphics data

� IteratorList iteratorList

list of iterators returned by iterators()

� ModelList modelList

list of models returned by models()

Private Member Functions

� Strategy � get_strategy ()

Used by the envelope to instantiate the correct letter class.

Private Attributes

� Strategy � strategyRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing strategyRep

8.96.1 Detailed Description

Base class for the strategy class hierarchy.

The Strategy class is the base class for the class hierarchy providing the top level control in DAKOTA.
The strategy is responsible for creating and managing iterators and models. For memory efficiency and en-
hanced polymorphism, the strategy hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced
C++", p. 133), for which the base class (Strategy) serves as the envelope and one of the derived classes
(selected in Strategy::get_strategy()) serves as the letter.

8.96.2 Constructor & Destructor Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.96 Strategy Class Reference 411

8.96.2.1 Strategy ()

default constructor

Default constructor. strategyRep is NULL in this case (a populated problem_db is needed to build a mean-
ingful Strategy object). This makes it necessary to check for NULL in the copy constructor, assignment
operator, and destructor.

8.96.2.2 Strategy (ProblemDescDB & problem_db)

envelope constructor

Used in main.C instantiation to build the envelope. This constructor only needs to extract enough data
to properly execute get_strategy, since Strategy::Strategy(BaseConstructor, problem_db) builds the actual
base class data inherited by the derived strategies.

8.96.2.3 Strategy (const Strategy & strat)

copy constructor

Copy constructor manages sharing of strategyRep and incrementing of referenceCount.

8.96.2.4 � Strategy () [virtual]

destructor

Destructor decrements referenceCount and only deletes strategyRep when referenceCount reaches zero.

8.96.2.5 Strategy (BaseConstructor, ProblemDescDB & problem_db) [protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all inherited strategies. get_strategy()
instantiates a derived class letter and the derived constructor selects this base class constructor in its initial-
ization list (to avoid the recursion of the base class constructor calling get_strategy() again). Since the letter
IS the representation, its representation pointer is set to NULL (an uninitialized pointer causes problems in

� Strategy).

8.96.3 Member Function Documentation

8.96.3.1 Strategy operator= (const Strategy & strat)

assignment operator

Assignment operator decrements referenceCount for old strategyRep, assigns new strategyRep, and incre-
ments referenceCount for new strategyRep.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

412 DAKOTA Class Documentation

8.96.3.2 void run_iterator (Iterator & the_iterator, Model & the_model)

Convenience function for invoking an iterator and managing parallelism. This version omits communicator
repartitioning. Function must be public due to use by MINLPNode.

This is a convenience function for encapsulating the parallel features (run/serve) of running an iterator. This
function omits allocation/deallocation of communicators to provide greater efficiency in those strategies
which involve multiple iterator executions but only require communicator allocation/deallocation to be
performed once.

It does not require a strategyRep forward since it is only used by letter objects. While it is currently a
public function due to its use in MINLPNode, this usage still involves a strategy letter object.

8.96.3.3 void init_communicators (Iterator & the_iterator, Model & the_model) [protected]

convenience function for allocating comms prior to running an iterator

This is a convenience function for encapsulating the allocation of communicators prior to running an iter-
ator. It does not require a strategyRep forward since it is only used by letter objects.

8.96.3.4 void free_communicators (Model & the_model) [protected]

convenience function for deallocating comms after running an iterator

This is a convenience function for encapsulating the deallocation of communicators after running an itera-
tor. It does not require a strategyRep forward since it is only used by letter objects.

8.96.3.5 void initialize_graphics (const Model & model) [protected]

convenience function for initialization of 2D graphics and data tabulation

This is a convenience function for encapsulating graphics initialization operations. It does not require a
strategyRep forward since it is only used by letter objects.

8.96.3.6 Strategy � get_strategy () [private]

Used by the envelope to instantiate the correct letter class.

Used only by the envelope constructor to initialize strategyRep to the appropriate derived type, as given by
the strategyName attribute.

The documentation for this class was generated from the following files:

� DakotaStrategy.H
� DakotaStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.97 String Class Reference 413

8.97 String Class Reference

Dakota::String class, used as main string class for Dakota.

Public Member Functions

� String ()

Default constructor.

� String (const String &a)

Default copy constructor.

� String (const char � initial_val)

Copy constructor from standard C char array.

� � String ()

Destructor.

� String & operator= (const String &)

Normal assignment operator.

� String & operator= (const DAKOTA_BASE_STRING &)

Assignment operator for base string.

� String & operator= (const char �)

Assignment operator, standard C char � .

� operator const char � () const

The operator() returns pointer to standard C char array.

� String & toUpper ()

Convert to upper case string.

� void upper ()
� String & toLower ()

Convert to lower case string.

� void lower ()
� bool contains (const char � subString) const

Returns true if String contains char � substring.

� char � data () const

Returns pointer to standard C char array.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

414 DAKOTA Class Documentation

8.97.1 Detailed Description

Dakota::String class, used as main string class for Dakota.

The Dakota::String class is the common string class for Dakota. It provides a common interface for string
operations whether inheriting from the STL basic_string or the Rogue Wave RWCString class

8.97.2 Member Function Documentation

8.97.2.1 operator const char � () const [inline]

The operator() returns pointer to standard C char array.

The operator () returns a pointer to a char string. Uses the STL c_str() method. This allows for the String
to be used in method calls without having to call the data() or c_str() methods.

8.97.2.2 void upper ()

Private method which converts String to upper. Utilizes an STL iterator to step through the string and
then calls the STL toupper() method. Needs to be done this way because STL only provides a single char
toupper method.

8.97.2.3 void lower ()

Private method which converts String to lower. Utilizes an STL iterator to step through the string and
then calls the STL tolower() method. Needs to be done this way because STL only provides a single char
tolower method.

8.97.2.4 bool contains (const char � subString) const [inline]

Returns true if String contains char � substring.

Returns true of the String contains the char � subString. Calls the STL rfind() method, then checks if
substring was found within the String

8.97.2.5 char � data () const [inline]

Returns pointer to standard C char array.

Returns a pointer to C style char array. Needed to mimic the Rogue Wave string class. USE WITH CARE.

The documentation for this class was generated from the following files:

� DakotaString.H
� DakotaString.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.98 SurrBasedOptStrategy Class Reference 415

8.98 SurrBasedOptStrategy Class Reference

Strategy for provably-convergent surrogate-based optimization.

Inheritance diagram for SurrBasedOptStrategy::

SurrBasedOptStrategy

Strategy

Public Member Functions

� SurrBasedOptStrategy (ProblemDescDB &problem_db)

constructor

� � SurrBasedOptStrategy ()

destructor

� void run_strategy ()

Performs the surrogate-based optimization strategy by optimizing local, global, or hierarchical surrogates
over a series of trust regions.

� const Variables & strategy_variable_results () const

return the SBO final solution (variables)

� const Response & strategy_response_results () const

return the SBO final solution (response)

� IteratorList & iterators (bool recurse_flag=true)

returns selectedIterator and any subordinate iterators

� ModelList & models (bool recurse_flag=true)

returns approximateModel and any subordinate models

Private Member Functions

� void hard_convergence_check (const Response &response_truth, const RealVector &c_vars, const
RealVector &lower_bnds, const RealVector &upper_bnds)

check for hard convergence (norm of projected gradient of penalty function near zero)

� void soft_convergence_check (const RealVector &c_vars_center, const RealVector &c_vars_star,
const Response &response_center_truth, const Response &response_center_approx, const Response
&response_star_truth, const Response &response_star_approx)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

416 DAKOTA Class Documentation

check for soft convergence (diminishing returns)

� void compute_penalty (const RealVector &fns_center_truth, const RealVector &fns_star_truth)

initialize and update the penaltyParameter

� Real compute_penalty_function (const RealVector &fn_vals)

compute a penalty function from a set of function values

� Real compute_objective (const RealVector &fn_vals)

compute a single objective value from one or more objective functions

� Real compute_constraint_violation (const RealVector &fn_vals)

compute the constraint violation from a set of function values

Private Attributes

� Model approximateModel

the surrogate model (a LayeredModel object)

� Iterator selectedIterator

the optimizer used on approximateModel

� Real trustRegionFactor

the trust region factor is used to compute the total size of the trust region – it is a percentage, e.g. for
trustRegionFactor = 0.1, the actual size of the trust region will be 10% of the global bounds (upper bound
- lower bound for each design variable).

� Real minTrustRegionFactor

a soft convergence control: stop SBO when the trust region factor is reduced below the value of minTrust-
RegionFactor

� Real convergenceTol

the optimizer convergence tolerance; used in several SBO hard and soft convergence checks

� Real constraintTol

a tolerance specifying the distance from a constraint boundary that is allowed before an active constraint is
considered to be a violated constraint (only violated constraints are used in penalty function computations).

� Real trRatioContractValue

trust region ratio min value: contract tr if ratio below this value

� Real trRatioExpandValue

trust region ratio sufficient value: expand tr if ratio above this value

� Real gammaContract

trust region contraction factor

� Real gammaExpand

trust region expansion factor

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.98 SurrBasedOptStrategy Class Reference 417

� Real gammaNoChange

factor for maintaining the current trust region size (normally 1.0)

� Real penaltyParameter

the penalization factor for violated constraints used in penalty function calculations; increases exponen-
tially with iteration count

� int penaltyIterOffset

iteration offset used to update the scaling of the penalty parameter

� int sboIterNum

SBO iteration number.

� int sboIterMax

maximum number of SBO iterations

� short convergenceFlag

code indicating satisfaction of hard or soft convergence conditions

� int numFns

number of response functions

� int numVars

number of active continuous variables

� short softConvCount

number of consecutive candidate point rejections. If the count reaches softConvLimit, stop SBO.

� short softConvLimit

the limit on consecutive candidate point rejections. If exceeded by softConvCount, stop SBO.

� bool gradientFlag

flags the use of gradients within the SBO process

� bool hessianFlag

flags the use of Hessians within the SBO process

� bool correctionFlag

flags the use of surrogate correction techniques at the center of each trust region

� bool globalApproxFlag

flags the use of a global data fit surrogate (rsm, ann, mars, kriging)

� bool localApproxFlag

flags the use of a local data fit surrogate (Taylor series)

� bool hierarchApproxFlag

flags the use of a hierarchical surrogate

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

418 DAKOTA Class Documentation

� bool newCenterFlag

flags the acceptance of a candidate point and the existence of a new trust region center

� bool daceCenterPtFlag

flags the availability of the center point in the DACE evaluations for global approximations (CCD, Box-
Behnken)

� bool multiLayerBypassFlag

flags the simultaneous presence of two conditions: (1) additional layerings within actual_model
(e.g., approximateModel = layered/nested/layered -

�
actual_model = nested/layered), and (2) a user-

specification to bypass all layerings within actual_model for the evaluation of truth data (response_center_-
truth and response_star_truth).

� bool useGradsFlag

flags the "use_gradients" specification in which gradients are to be evaluated for each DACE point in global
surrogate builds.

� size_t numObjFns

number of objective functions

� size_t numNonlinIneqConstr

number of nonlinear inequality constraints

� size_t numNonlinEqConstr

number of nonlinear equality constraints

� RealVector multiObjWts

vector of multiobjective weights.

� RealVector nonlinIneqLowerBnds

vector of nonlinear inequality constraint lower bounds

� RealVector nonlinIneqUpperBnds

vector of nonlinear inequality constraint upper bounds

� RealVector nonlinEqTargets

vector of nonlinear equality constraint targets

� Variables bestVariables

best variables found in SBO

� Response bestResponses

best responses found in SBO

8.98.1 Detailed Description

Strategy for provably-convergent surrogate-based optimization.

This strategy uses a LayeredModel to perform optimization based on local, global, or hierarchical surro-
gates. It achieves provable convergence through the use of a sequence of trust regions and the application
of surrogate corrections at the trust region centers.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.98 SurrBasedOptStrategy Class Reference 419

8.98.2 Member Function Documentation

8.98.2.1 void run_strategy () [virtual]

Performs the surrogate-based optimization strategy by optimizing local, global, or hierarchical surrogates
over a series of trust regions.

Trust region-based strategy to perform surrogate-based optimization in subregions (trust regions) of the
parameter space. The optimizer operates on approximations in lieu of the more expensive simulation-
based response functions. The size of the trust region is varied according to the goodness of the agreement
between the approximations and the true response functions.

Reimplemented from Strategy.

8.98.2.2 void hard_convergence_check (const Response & response_truth, const RealVector &
c_vars, const RealVector & lower_bnds, const RealVector & upper_bnds) [private]

check for hard convergence (norm of projected gradient of penalty function near zero)

The hard convergence check computes the 2-norm of the projected gradient of the penalty function (dp/dx
= df/dx + 2 r_p g+

�

T dg+/dx + 2 r_p h+
�

T dh+/dx) at the trust region center and signals convergence if
the 2-norm is close to zero. The projection is needed to remove any gradient component directed into an
active bound constraint (since this penalty function does not explicity include Lagrange multipliers times
the bound constraints; if it did, the Lagrange multplier for an active bound constraint would zero out the
total gradient component).

8.98.2.3 void soft_convergence_check (const RealVector & c_vars_center, const RealVector
& c_vars_star, const Response & response_center_truth, const Response &
response_center_approx, const Response & response_star_truth, const Response &
response_star_approx) [private]

check for soft convergence (diminishing returns)

Compute soft convergence metrics (trust region ratio, number of consecutive failures, min trust region size,
etc.) and use them to assess whether the convergence rate has decreased to a point where the process should
be terminated (diminishing returns).

8.98.2.4 void compute_penalty (const RealVector & fns_center_truth, const RealVector &
fns_star_truth) [private]

initialize and update the penaltyParameter

Scaling of the penalty value is important to avoid rejecting iterates which must increase the objective to
achieve a reduction in constraint violation. This routine uses the ratio of relative change between center
and star points for the objective and constraint violation values to rescale penalty values.

8.98.2.5 Real compute_penalty_function (const RealVector & fn_vals) [private]

compute a penalty function from a set of function values

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

420 DAKOTA Class Documentation

The penalty function computation applies a quadratic penalty to any constraint violations and adds this to
the objective function(s) p = f + r_p cv.

8.98.2.6 Real compute_objective (const RealVector & fn_vals) [private]

compute a single objective value from one or more objective functions

The objective computation sums up the contributions from one of more objective functions using the mul-
tiobjective weights.

8.98.2.7 Real compute_constraint_violation (const RealVector & fn_vals) [private]

compute the constraint violation from a set of function values

Compute the quadratic constraint violation defined as cv = g+
�

T g+ + h+
�

T h+. This implementation
supports equality constraints and 2-sided inequalities. The constraintTol allows for a small constraint
infeasibility.

The documentation for this class was generated from the following files:

� SurrBasedOptStrategy.H
� SurrBasedOptStrategy.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.99 SurrLayeredModel Class Reference 421

8.99 SurrLayeredModel Class Reference

Derived model class within the layered model branch for managing data fit surrogates (global and local).

Inheritance diagram for SurrLayeredModel::

SurrLayeredModel

LayeredModel

Model

Public Member Functions

� SurrLayeredModel (ProblemDescDB &problem_db)

constructor

� � SurrLayeredModel ()

destructor

Protected Member Functions

� void derived_compute_response (const IntArray &asv)

portion of compute_response() specific to SurrLayeredModel

� void derived_asynch_compute_response (const IntArray &asv)

portion of asynch_compute_response() specific to SurrLayeredModel

� const ResponseArray & derived_synchronize ()

portion of synchronize() specific to SurrLayeredModel

� const ResponseList & derived_synchronize_nowait ()

portion of synchronize_nowait() specific to SurrLayeredModel

� const IntList & synchronize_nowait_completions ()

return completion id’s matching response list from derived_synchronize_nowait()

� Model subordinate_model ()

returns actualModel

� Iterator subordinate_iterator ()

return daceIterator

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

422 DAKOTA Class Documentation

� Interface & interface ()

return approxInterface

� void layering_bypass (bool bypass_flag)

set layeringBypass flag and pass request on to actualModel for any lower-level layerings.

� void build_approximation ()

Builds the local/multipoint/global approximation using daceIterator/actualModel.

� void update_approximation (const RealVector &x_star, const Response &response_star)

Adds a point to a global approximation (request forwarded to approxInterface).

� const RealVectorArray & approximation_coefficients ()

return the approximation coefficients from each Approximation (request forwarded to approxInterface)

� void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in actualModel

� bool derived_master_overload () const

prevents overloading the master with a multiprocessor evaluation

� void derived_init_communicators (const int &max_iterator_concurrency)

set up actualModel for parallel operations

� void derived_init_serial ()

set up actualModel for serial operations.

� void reset_communicators ()

reset communicator partitions for the SurrLayeredModel (request forwarded to actualModel)

� void free_communicators ()

deallocate communicator partitions for the SurrLayeredModel (request forwarded to actualModel)

� void serve ()

Service actualModel job requests received from the master. Completes when a termination message is
received from stop_servers().

� void stop_servers ()

Executed by the master to terminate actualModel server operations when SurrLayeredModel iteration is
complete.

� int total_eval_counter () const

return the total evaluation count for the SurrLayeredModel (request forwarded to approxInterface)

� int new_eval_counter () const

return the new evaluation count for the SurrLayeredModel (request forwarded to approxInterface)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.99 SurrLayeredModel Class Reference 423

Private Member Functions

� void update_actual_model ()

update actualModel with current variable values/bounds/labels

Private Attributes

� Interface approxInterface

manages the building and subsequent evaluation of the approximations (required for both global and local)

� String actualInterfacePointer

string identifier for the actual interface from the local approximation specification (required for local); used
to build actualModel for local approximations

� String daceMethodPointer

string identifier for the dace method from the global approximation specification; used in building dace-
Iterator and actualModel for global approximations (optional for global since restart data may also be
used)

� Model actualModel

the truth model which provides evaluations for building the surrogate (optional for global since restart data
may also be used, required for local)

� Iterator daceIterator

selects parameter sets on which to evaluate actualModel in order to generate the necessary data for building
global approximations (optional for global since restart data may also be used)

8.99.1 Detailed Description

Derived model class within the layered model branch for managing data fit surrogates (global and local).

The SurrLayeredModel class manages global or local approximations (surrogates that involve data fits) that
are used in place of an expensive model. The class contains an approxInterface (required for both global and
local) which manages the approximate function evaluations, an actualModel (optional for global, required
for local) which provides truth evaluations for building the surrogate, and a daceIterator (optional for global,
not used for local) which selects parameter sets on which to evaluate actualModel in order to generate the
necessary data for building global approximations.

8.99.2 Member Function Documentation

8.99.2.1 void derived_compute_response (const IntArray & asv) [protected, virtual]

portion of compute_response() specific to SurrLayeredModel

Build the approximation (if needed), evaluate the approximate response using approxInterface, and, if
correction is active, correct the results.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

424 DAKOTA Class Documentation

Reimplemented from Model.

8.99.2.2 void derived_asynch_compute_response (const IntArray & asv) [protected,
virtual]

portion of asynch_compute_response() specific to SurrLayeredModel

Build the approximation (if needed) and evaluate the approximate response using approxInterface in a
quasi-asynchronous approach (ApproximationInterface::map() performs the map synchronously and book-
keeps the results for return in derived_synchronize() below).

Reimplemented from Model.

8.99.2.3 const ResponseArray & derived_synchronize () [protected, virtual]

portion of synchronize() specific to SurrLayeredModel

Retrieve quasi-asynchronous evaluations from approxInterface and, if correction is active, apply correction
to each response in the array.

Reimplemented from Model.

8.99.2.4 const ResponseList & derived_synchronize_nowait () [protected, virtual]

portion of synchronize_nowait() specific to SurrLayeredModel

Retrieve quasi-asynchronous evaluations from approxInterface and, if correction is active, apply correction
to each response in the list.

Reimplemented from Model.

8.99.2.5 void build_approximation () [protected, virtual]

Builds the local/multipoint/global approximation using daceIterator/actualModel.

Build either a global approximation using daceIterator or a local approximation using actualModel. Selec-
tion triggers on actualInterfacePointer (required specification for local approximation interfaces, not used
in global specification).

Reimplemented from Model.

8.99.2.6 bool derived_master_overload () const [inline, protected, virtual]

prevents overloading the master with a multiprocessor evaluation

compute_response calls never overload the master since there is no parallelism in the use of approx-
Interface. Derived master overload for actualModel is handled separately in actualModel.compute_-
response() (within daceIterator.run_iterator(), etc.).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.99 SurrLayeredModel Class Reference 425

Reimplemented from Model.

8.99.2.7 void derived_init_communicators (const int & max_iterator_concurrency) [inline,
protected, virtual]

set up actualModel for parallel operations

asynchronous flags need to be initialized for the sub-models. In addition, max_iterator_concurrency is the
outer level iterator concurrency, not the DACE concurrency that actualModel will see, and recomputing the
message_lengths on the sub-model is probably not a bad idea either. Therefore, recompute everything on
actualModel using init_communicators.

Reimplemented from Model.

8.99.2.8 void update_actual_model () [private]

update actualModel with current variable values/bounds/labels

Update variables data within actualModel using values and labels from currentVariables and bounds from
userDefinedVarConstraints.

8.99.3 Member Data Documentation

8.99.3.1 String actualInterfacePointer [private]

string identifier for the actual interface from the local approximation specification (required for local); used
to build actualModel for local approximations

Specification is used only for local approximations, since the dace_method_pointer in the global approxi-
mation specification is responsible for identifying all actualModel components.

8.99.3.2 Model actualModel [private]

the truth model which provides evaluations for building the surrogate (optional for global since restart data
may also be used, required for local)

There are no restrictions on actualModel in the global case, so arbitrary nestings are possible. In the
local case, model_type must be set to "single" to avoid recursion on SurrLayeredModel, since there is no
additional method specification.

The documentation for this class was generated from the following files:

� SurrLayeredModel.H
� SurrLayeredModel.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

426 DAKOTA Class Documentation

8.100 SurrogateDataPoint Class Reference

Simple container class encapsulating basic parameter and response data for defining a "truth" data point.

Public Member Functions

� SurrogateDataPoint ()

default constructor

� SurrogateDataPoint (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad,
const RealMatrix &fn_hess)

standard constructor

� SurrogateDataPoint (const SurrogateDataPoint &sdp)

copy constructor

� � SurrogateDataPoint ()

destructor

� SurrogateDataPoint & operator= (const SurrogateDataPoint &sdp)

assignment operator

� int operator== (const SurrogateDataPoint &sdp) const

equality operator

Public Attributes

� RealVector continuousVars

continuous variables

� Real responseFn

truth response function value

� RealBaseVector responseGrad

truth response function gradient

� RealMatrix responseHess

truth response function Hessian

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.100 SurrogateDataPoint Class Reference 427

8.100.1 Detailed Description

Simple container class encapsulating basic parameter and response data for defining a "truth" data point.

A list of these data points is contained in each Approximation instance (Approximation::currentPoints) and
provides the data to build the approximation. Data is public to avoid maintaining set/get functions, but is
still encapsulated within Approximation since Approximation::currentPoints is protected (a similar model
is used with with Data class objects contained in ProblemDescDB).

The documentation for this class was generated from the following file:

� DakotaApproximation.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

428 DAKOTA Class Documentation

8.101 SysCallAnalysisCode Class Reference

Derived class in the AnalysisCode class hierarchy which spawns simulations using system calls.

Inheritance diagram for SysCallAnalysisCode::

SysCallAnalysisCode

AnalysisCode

Public Member Functions

� SysCallAnalysisCode (const ProblemDescDB &problem_db)

constructor

� � SysCallAnalysisCode ()

destructor

� void spawn_evaluation (const bool block_flag)

spawn a complete function evaluation

� void spawn_input_filter (const bool block_flag)

spawn the input filter portion of a function evaluation

� void spawn_analysis (const int &analysis_id, const bool block_flag)

spawn a single analysis as part of a function evaluation

� void spawn_output_filter (const bool block_flag)

spawn the output filter portion of a function evaluation

� const String & command_usage () const

return commandUsage

Private Attributes

� String commandUsage

optional command usage string for supporting nonstandard command syntax (supported only by SysCall
analysis codes)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.101 SysCallAnalysisCode Class Reference 429

8.101.1 Detailed Description

Derived class in the AnalysisCode class hierarchy which spawns simulations using system calls.

SysCallAnalysisCode creates separate simulation processes using the C system() command. It utilizes
CommandShell to manage shell syntax and asynchronous invocations.

8.101.2 Member Function Documentation

8.101.2.1 void spawn_evaluation (const bool block_flag)

spawn a complete function evaluation

Put the SysCallAnalysisCode to the shell using either the default syntax or specified commandUsage syn-
tax. This function is used when all portions of the function evaluation (i.e., all analysis drivers) are executed
on the local processor.

8.101.2.2 void spawn_input_filter (const bool block_flag)

spawn the input filter portion of a function evaluation

Put the input filter to the shell. This function is used when multiple analysis drivers are spread between
processors. No need to check for a Null input filter, as this is checked externally. Use of nonblocking shells
is supported in this fn, although its use is currently prevented externally.

8.101.2.3 void spawn_analysis (const int & analysis_id, const bool block_flag)

spawn a single analysis as part of a function evaluation

Put a single analysis to the shell using the default syntax (no commandUsage support for analyses). This
function is used when multiple analysis drivers are spread between processors. Use of nonblocking shells
is supported in this fn, although its use is currently prevented externally.

8.101.2.4 void spawn_output_filter (const bool block_flag)

spawn the output filter portion of a function evaluation

Put the output filter to the shell. This function is used when multiple analysis drivers are spread between
processors. No need to check for a Null output filter, as this is checked externally. Use of nonblocking
shells is supported in this fn, although its use is currently prevented externally.

The documentation for this class was generated from the following files:

� SysCallAnalysisCode.H
� SysCallAnalysisCode.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

430 DAKOTA Class Documentation

8.102 SysCallApplicInterface Class Reference

Derived application interface class which spawns simulation codes using system calls.

Inheritance diagram for SysCallApplicInterface::

SysCallApplicInterface

ApplicationInterface

Interface

Public Member Functions

� SysCallApplicInterface (const ProblemDescDB &problem_db, const size_t &num_fns)

constructor

� � SysCallApplicInterface ()

destructor

� void derived_map (const Variables &vars, const IntArray &asv, Response &response, int fn_eval_-
id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of per-
forming an evaluation that is specific to a derived class.

� void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of per-
forming an asynchronous evaluation that is specific to a derived class.

� void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version waits for at least one
completion.

� void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their
results. It provides the processing code that is specific to derived classes. This version is nonblocking and
will return without any completions if none are immediately available.

� int derived_synchronous_local_analysis (const int &analysis_id)

Execute a particular analysis (identified by analysis_id) synchronously on the local processor. Used for the
derived class specifics within ApplicationInterface::serve_analyses_synch().

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.102 SysCallApplicInterface Class Reference 431

Private Member Functions

� void spawn_application (const bool block_flag)

Spawn the application by managing the input filter, analysis drivers, and output filter. Called from
derived_map() & derived_map_asynch().

� void derived_synch_kernel (PRPList &prp_list)

Convenience function for common code between derived_synch() & derived_synch_nowait().

� bool system_call_file_test (const String &root_file)

detect completion of a function evaluation through existence of the necessary results file(s)

Private Attributes

� SysCallAnalysisCode sysCallSimulator

SysCallAnalysisCode provides convenience functions for passing the input filter, the analysis drivers, and
the output filter to a CommandShell in various combinations.

� IntList sysCallList

list of function evaluation id’s for active asynchronous system call evaluations

� IntList failIdList

list of function evaluation id’s for tracking response file read failures

� IntList failCountList

list containing the number of response read failures for each function evaluation identified in failIdList

8.102.1 Detailed Description

Derived application interface class which spawns simulation codes using system calls.

SysCallApplicInterface uses a SysCallAnalysisCode object for performing simulation invocations.

The documentation for this class was generated from the following files:

� SysCallApplicInterface.H
� SysCallApplicInterface.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

432 DAKOTA Class Documentation

8.103 TaylorSurf Class Reference

Derived approximation class for first- or second-order Taylor series (local approximation).

Inheritance diagram for TaylorSurf::

TaylorSurf

Approximation

Public Member Functions

� TaylorSurf (const ProblemDescDB &problem_db, const size_t &num_acv)

constructor

� � TaylorSurf ()

destructor

Protected Member Functions

� void find_coefficients ()

calculate the data fit coefficients using the currentPoints list of SurrogateDataPoints

� int required_samples ()

return the minimum number of samples required to build the derived class approximation type in numVars
dimensions

� Real get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

� const RealBaseVector & get_gradient (const RealVector &x)

retrieve the approximate function gradient for a given parameter vector

� const RealMatrix & get_hessian (const RealVector &x)

retrieve the approximate function Hessian for a given parameter vector

Private Attributes

� bool secondOrderFlag

flag to indicate a 2nd-order Taylor series with a Hessian term

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.103 TaylorSurf Class Reference 433

8.103.1 Detailed Description

Derived approximation class for first- or second-order Taylor series (local approximation).

The TaylorSurf class provides a local approximation based on data from a single point in parameter space.
It uses a first- or second-order Taylor series expansion: f(x) = f(x_c) + grad(x_c)’ (x - x_c) + (x - x_c)’
Hess(x_c) (x - x_c) / 2.

The documentation for this class was generated from the following files:

� TaylorSurf.H
� TaylorSurf.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

434 DAKOTA Class Documentation

8.104 VarConstraints Class Reference

Base class for the variable constraints class hierarchy.

Inheritance diagram for VarConstraints::

VarConstraints

AllMergedVarConstraints AllVarConstraints FundamentalVarConstraints MergedVarConstraints

Public Member Functions

� VarConstraints ()

default constructor

� VarConstraints (const ProblemDescDB &problem_db, const String &vars_type)

standard constructor

� VarConstraints (const VarConstraints &vc)

copy constructor

� virtual � VarConstraints ()

destructor

� VarConstraints operator= (const VarConstraints &vc)

assignment operator

� virtual const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

� virtual void continuous_lower_bounds (const RealVector &c_l_bnds)

set the active continuous variable lower bounds

� virtual const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

� virtual void continuous_upper_bounds (const RealVector &c_u_bnds)

set the active continuous variable upper bounds

� virtual const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

� virtual void discrete_lower_bounds (const IntVector &d_l_bnds)

set the active discrete variable lower bounds

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.104 VarConstraints Class Reference 435

� virtual const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

� virtual void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

� virtual const RealVector & inactive_continuous_lower_bounds () const

return the inactive continuous lower bounds

� virtual void inactive_continuous_lower_bounds (const RealVector &i_c_l_bnds)

set the inactive continuous lower bounds

� virtual const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds

� virtual void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds

� virtual const IntVector & inactive_discrete_lower_bounds () const

return the inactive discrete lower bounds

� virtual void inactive_discrete_lower_bounds (const IntVector &i_d_l_bnds)

set the inactive discrete lower bounds

� virtual const IntVector & inactive_discrete_upper_bounds () const

return the inactive discrete upper bounds

� virtual void inactive_discrete_upper_bounds (const IntVector &i_d_u_bnds)

set the inactive discrete upper bounds

� virtual RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

� virtual RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

� virtual IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

� virtual IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

� virtual void write (ostream &s) const

write a variable constraints object to an ostream

� virtual void read (istream &s)

read a variable constraints object from an istream

� size_t num_linear_ineq_constraints () const

return the number of linear inequality constraints

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

436 DAKOTA Class Documentation

� size_t num_linear_eq_constraints () const

return the number of linear equality constraints

� const RealMatrix & linear_ineq_constraint_coeffs () const

return the linear inequality constraint coefficients

� const RealVector & linear_ineq_constraint_lower_bounds () const

return the linear inequality constraint lower bounds

� const RealVector & linear_ineq_constraint_upper_bounds () const

return the linear inequality constraint upper bounds

� const RealMatrix & linear_eq_constraint_coeffs () const

return the linear equality constraint coefficients

� const RealVector & linear_eq_constraint_targets () const

return the linear equality constraint targets

Protected Member Functions

� VarConstraints (BaseConstructor, const ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

� void manage_linear_constraints (const ProblemDescDB &problem_db)

perform checks on user input, convert linear constraint coefficient input to matrices, and assign defaults

Protected Attributes

� String variablesType

All, Merged, AllMerged, or Fundamental.

� size_t numLinearIneqConstraints

number of linear inequality constraints

� size_t numLinearEqConstraints

number of linear equality constraints

� RealMatrix linearIneqConstraintCoeffs

linear inequality constraint coefficients

� RealMatrix linearEqConstraintCoeffs

linear equality constraint coefficients

� RealVector linearIneqConstraintLowerBnds

linear inequality constraint lower bounds

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.104 VarConstraints Class Reference 437

� RealVector linearIneqConstraintUpperBnds

linear inequality constraint upper bounds

� RealVector linearEqConstraintTargets

linear equality constraint targets

� RealVector emptyRealVector

an empty real vector returned in get functions when there are no variable constraints corresponding to the
request

� IntVector emptyIntVector

an empty int vector returned in get functions when there are no variable constraints corresponding to the
request

Private Member Functions

� VarConstraints � get_var_constraints (const ProblemDescDB &problem_db)

Used only by the constructor to initialize varConstraintsRep to the appropriate derived type.

Private Attributes

� VarConstraints � varConstraintsRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing varConstraintsRep

8.104.1 Detailed Description

Base class for the variable constraints class hierarchy.

The VarConstraints class is the base class for the class hierarchy managing linear and bound constraints
on the variables. Using the variable lower and upper bounds arrays and linear constraint coefficients and
bounds from the input specification, different derived classes define different views of this data. For mem-
ory efficiency and enhanced polymorphism, the variable constraints hierarchy employs the "letter/envelope
idiom" (see Coplien "Advanced C++", p. 133), for which the base class (VarConstraints) serves as the
envelope and one of the derived classes (selected in VarConstraints::get_var_constraints()) serves as the
letter.

8.104.2 Constructor & Destructor Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

438 DAKOTA Class Documentation

8.104.2.1 VarConstraints ()

default constructor

The default constructor: varConstraintsRep is NULL in this case (a populated problem_db is needed to
build a meaningful VarConstraints object). This makes it necessary to check for NULL in the copy con-
structor, assignment operator, and destructor.

8.104.2.2 VarConstraints (const ProblemDescDB & problem_db, const String & vars_type)

standard constructor

The envelope constructor only needs to extract enough data to properly execute get_var_constraints, since
the constructor overloaded with BaseConstructor builds the actual base class data inherited by the derived
classes.

8.104.2.3 VarConstraints (const VarConstraints & vc)

copy constructor

Copy constructor manages sharing of varConstraintsRep and incrementing of referenceCount.

8.104.2.4 � VarConstraints () [virtual]

destructor

Destructor decrements referenceCount and only deletes varConstraintsRep when referenceCount reaches
zero.

8.104.2.5 VarConstraints (BaseConstructor, const ProblemDescDB & problem_db)
[protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_var_constraints()
instantiates a derived class letter and the derived constructor selects this base class constructor in its ini-
tialization list (to avoid recursion in the base class constructor calling get_var_constraints() again). Since
the letter IS the representation, its rep pointer is set to NULL (an uninitialized pointer causes problems in

� VarConstraints).

8.104.3 Member Function Documentation

8.104.3.1 VarConstraints operator= (const VarConstraints & vc)

assignment operator

Assignment operator decrements referenceCount for old varConstraintsRep, assigns new varConstraints-
Rep, and increments referenceCount for new varConstraintsRep.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.104 VarConstraints Class Reference 439

8.104.3.2 void manage_linear_constraints (const ProblemDescDB & problem_db) [protected]

perform checks on user input, convert linear constraint coefficient input to matrices, and assign defaults

Convenience function called from derived class constructors. The number of variables active for applying
linear constraints is currently defined to be the number of active continuous variables plus the number of
active discrete variables (the most general case), even though very few optimizers can currently support
mixed variable linear constraints.

8.104.3.3 VarConstraints � get_var_constraints (const ProblemDescDB & problem_db)
[private]

Used only by the constructor to initialize varConstraintsRep to the appropriate derived type.

Initializes varConstraintsRep to the appropriate derived type, as given by the variablesType attribute.

The documentation for this class was generated from the following files:

� DakotaVarConstraints.H
� DakotaVarConstraints.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

440 DAKOTA Class Documentation

8.105 Variables Class Reference

Base class for the variables class hierarchy.

Inheritance diagram for Variables::

Variables

AllMergedVariables AllVariables FundamentalVariables MergedVariables

Public Member Functions

� Variables ()

default constructor

� Variables (const ProblemDescDB &problem_db)

standard constructor

� Variables (const String &vars_type)

alternate constructor

� Variables (const Variables &vars)

copy constructor

� virtual � Variables ()

destructor

� Variables operator= (const Variables &vars)

assignment operator

� virtual size_t tv () const

Returns total number of vars.

� virtual size_t cv () const

Returns number of active continuous vars.

� virtual size_t dv () const

Returns number of active discrete vars.

� virtual const RealVector & continuous_variables () const

return the active continuous variables

� virtual void continuous_variables (const RealVector &c_vars)

set the active continuous variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.105 Variables Class Reference 441

� virtual const IntVector & discrete_variables () const

return the active discrete variables

� virtual void discrete_variables (const IntVector &d_vars)

set the active discrete variables

� virtual const StringArray & continuous_variable_labels () const

return the active continuous variable labels

� virtual void continuous_variable_labels (const StringArray &cv_labels)

set the active continuous variable labels

� virtual const StringArray & discrete_variable_labels () const

return the active discrete variable labels

� virtual void discrete_variable_labels (const StringArray &dv_labels)

set the active discrete variable labels

� virtual const RealVector & inactive_continuous_variables () const

return the inactive continuous variables

� virtual void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables

� virtual const IntVector & inactive_discrete_variables () const

return the inactive discrete variables

� virtual void inactive_discrete_variables (const IntVector &i_d_vars)

set the inactive discrete variables

� virtual const StringArray & inactive_continuous_variable_labels () const

return the inactive continuous variable labels

� virtual void inactive_continuous_variable_labels (const StringArray &i_c_vars)

set the inactive continuous variable labels

� virtual const StringArray & inactive_discrete_variable_labels () const

return the inactive discrete variable labels

� virtual void inactive_discrete_variable_labels (const StringArray &i_d_vars)

set the inactive discrete variable labels

� virtual size_t acv () const

returns total number of continuous vars

� virtual size_t adv () const

returns total number of discrete vars

� virtual RealVector all_continuous_variables () const

returns a single array with all continuous variables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

442 DAKOTA Class Documentation

� virtual IntVector all_discrete_variables () const

returns a single array with all discrete variables

� virtual StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

� virtual StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

� virtual StringArray all_variable_labels () const

returns a single array with all variable labels

� virtual void read (istream &s)

read a variables object from an istream

� virtual void write (ostream &s) const

write a variables object to an ostream

� virtual void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

� virtual void read_annotated (istream &s)

read a variables object in annotated format from an istream

� virtual void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

� virtual void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

� virtual void read (BiStream &s)

read a variables object from the binary restart stream

� virtual void write (BoStream &s) const

write a variables object to the binary restart stream

� virtual void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

� virtual void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

� Variables copy () const

for use when a true copy is needed (the representation is _not_ shared).

� const IntList & merged_integer_list () const

returns the list of discrete variables merged into a continuous array

� const String & variables_type () const

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.105 Variables Class Reference 443

returns the variables type: All, Merged, AllMerged, or Fundamental

� const StringArray & continuous_variable_types () const

return the active continuous variable types

� const StringArray & discrete_variable_types () const

return the active discrete variable types

Protected Member Functions

� Variables (BaseConstructor, const ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

Protected Attributes
� IntList mergedIntegerList

the list of discrete variables for which integrality is relaxed by merging them into a continuous array

� String variablesType

All, Merged, AllMerged, or Fundamental.

� StringArray continuousVarTypes

array of variable types for the active continuous variables

� StringArray discreteVarTypes

array of variable types for the active discrete variables

� RealVector emptyRealVector

an empty real vector returned in get functions when there are no variables corresponding to the request

� IntVector emptyIntVector

an empty int vector returned in get functions when there are no variables corresponding to the request

� StringArray emptyStringArray

an empty label array returned in get functions when there are no variables corresponding to the request

Private Member Functions

� virtual void copy_rep (const Variables � vars_rep)

Used by copy() to copy the contents of a letter class.

� Variables � get_variables (const ProblemDescDB &problem_db)

Used by the standard envelope constructor to instantiate the correct letter class.

� Variables � get_variables (const String &vars_type) const

Used by the alternate envelope constructor, by read functions, and by copy() to instantiate a new letter class.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

444 DAKOTA Class Documentation

Private Attributes

� Variables � variablesRep

pointer to the letter (initialized only for the envelope)

� int referenceCount

number of objects sharing variablesRep

Friends

� bool operator== (const Variables &vars1, const Variables &vars2)

equality operator

� bool operator!= (const Variables &vars1, const Variables &vars2)

inequality operator

8.105.1 Detailed Description

Base class for the variables class hierarchy.

The Variables class is the base class for the class hierarchy providing design, uncertain, and state variables
for continuous and discrete domains within a Model. Using the fundamental arrays from the input speci-
fication, different derived classes define different views of the data. For memory efficiency and enhanced
polymorphism, the variables hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++",
p. 133), for which the base class (Variables) serves as the envelope and one of the derived classes (selected
in Variables::get_variables()) serves as the letter.

8.105.2 Constructor & Destructor Documentation

8.105.2.1 Variables ()

default constructor

The default constructor: variablesRep is NULL in this case (a populated problem_db is needed to build
a meaningful Variables object). This makes it necessary to check for NULL in the copy constructor,
assignment operator, and destructor.

8.105.2.2 Variables (const ProblemDescDB & problem_db)

standard constructor

This is the primary envelope constructor which uses problem_db to build a fully populated variables object.
It only needs to extract enough data to properly execute get_variables(problem_db), since the constructor
overloaded with BaseConstructor builds the actual base class data inherited by the derived classes.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.105 Variables Class Reference 445

8.105.2.3 Variables (const String & vars_type)

alternate constructor

This is the alternate envelope constructor for instantiations on the fly. Since it does not have access to
problem_db, the letter class is not fully populated. This constructor executes get_variables(vars_type),
which invokes the default constructor of the derived letter class, which in turn invokes the default construc-
tor of the base class.

8.105.2.4 Variables (const Variables & vars)

copy constructor

Copy constructor manages sharing of variablesRep and incrementing of referenceCount.

8.105.2.5 � Variables () [virtual]

destructor

Destructor decrements referenceCount and only deletes variablesRep when referenceCount reaches zero.

8.105.2.6 Variables (BaseConstructor, const ProblemDescDB & problem_db) [protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite
recursion in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_variables()
instantiates a derived class letter and the derived constructor selects this base class constructor in its ini-
tialization list (to avoid the recursion of the base class constructor calling get_variables() again). Since
the letter IS the representation, its representation pointer is set to NULL (an uninitialized pointer causes
problems in � Variables).

8.105.3 Member Function Documentation

8.105.3.1 Variables operator= (const Variables & vars)

assignment operator

Assignment operator decrements referenceCount for old variablesRep, assigns new variablesRep, and in-
crements referenceCount for new variablesRep.

8.105.3.2 Variables copy () const

for use when a true copy is needed (the representation is _not_ shared).

Deep copies are used for history mechanisms such as bestVariables and data_pairs since these must cata-
logue copies (and should not change as the representation within currentVariables changes).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

446 DAKOTA Class Documentation

8.105.3.3 Variables � get_variables (const ProblemDescDB & problem_db) [private]

Used by the standard envelope constructor to instantiate the correct letter class.

Initializes variablesRep to the appropriate derived type, as given by problem_db attributes. The standard
derived class constructors are invoked.

8.105.3.4 Variables � get_variables (const String & vars_type) const [private]

Used by the alternate envelope constructor, by read functions, and by copy() to instantiate a new letter
class.

Initializes variablesRep to the appropriate derived type, as given by the vars_type attribute. The default
derived class constructors are invoked.

The documentation for this class was generated from the following files:

� DakotaVariables.H
� DakotaVariables.C

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.106 VariablesUtil Class Reference 447

8.106 VariablesUtil Class Reference

Utility class for the Variables and VarConstraints hierarchies which provides convenience functions for
variable vectors and label arrays for combining design, uncertain, and state variable types and merging
continuous and discrete variable domains.

Inheritance diagram for VariablesUtil::

VariablesUtil

AllMergedVarConstraints

AllMergedVariables

AllVarConstraints

AllVariables

FundamentalVarConstraints

FundamentalVariables

MergedVarConstraints

MergedVariables

Public Member Functions

� VariablesUtil ()

constructor

� � VariablesUtil ()

destructor

Protected Member Functions

� void update_merged (const RealVector &c_array, const IntVector &d_array, RealVector &m_array)

combine a continuous array and a discrete array into a single continuous array through promotion of
integers to reals (merged view)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

448 DAKOTA Class Documentation

� void update_all_continuous (const RealVector &c1_array, const RealVector &c2_array, const
RealVector &c3_array, RealVector &all_array) const

combine 3 continuous arrays (design, uncertain, state) into a single continuous array (all view)

� void update_all_discrete (const IntVector &d1_array, const IntVector &d2_array, IntVector &all_-
array) const

combine 2 discrete arrays (design, state) into a single discrete array (all view)

� void update_labels (const StringArray &l1_array, const StringArray &l2_array, StringArray &all_-
array) const

combine 2 label arrays into a single label array (merged or all views)

� void update_labels (const StringArray &l1_array, const StringArray &l2_array, const StringArray
&l3_array, StringArray &all_array) const

combine 3 label arrays (design, uncertain, state) into a single label array (all view)

� void update_labels_partial (size_t num_items, const StringArray &src_array, size_t src_start_index,
StringArray &tgt_array, size_t tgt_start_index) const

update a portion of one label array from a portion of another label array (all view)

8.106.1 Detailed Description

Utility class for the Variables and VarConstraints hierarchies which provides convenience functions for
variable vectors and label arrays for combining design, uncertain, and state variable types and merging
continuous and discrete variable domains.

Derived classes within the Variables and VarConstraints hierarchies use multiple inheritance to inherit these
utilities.

The documentation for this class was generated from the following file:

� VariablesUtil.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.107 Vector Class Template Reference 449

8.107 Vector Class Template Reference

Template class for the Dakota numerical vector.

Inheritance diagram for Vector::

Vector

BaseVector< T >

Public Member Functions

� Vector ()

Default constructor.

� Vector (size_t len)

Constructor which takes an initial length.

� Vector (size_t len, const T &initial_val)

Constructor which takes an initial length and an initial value.

� Vector (const Vector � T � &a)

Copy constructor.

� Vector (const T � p, size_t len)

Constructor which copies len entries from T � .

� � Vector ()

Destructor.

� Vector � T � & operator= (const Vector � T � &a)

Normal const assignment operator.

� Vector � T � & operator= (const T &ival)

Sets all elements in self to the value ival.

� operator T � () const

Converts the Vector to a standard C-style array. Use with care!

� void read (istream &s)

Reads a Vector from an input stream.

� void read (istream &s, Array � String � &label_array)

Reads a Vector and associated label array from an input stream.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

450 DAKOTA Class Documentation

� void read_partial (istream &s, size_t start_index, size_t num_items)

Reads part of a Vector from an input stream.

� void read_partial (istream &s, size_t start_index, size_t num_items, Array � String � &label_array)

Reads part of a Vector and the corresponding labels from an input stream.

� void read_tabular (istream &s)

Reads a Vector from a tabular text input file.

� void read_annotated (istream &s, Array � String � &label_array)

Reads a Vector and associated label array in annotated from an input stream.

� void print (ostream &s) const

Prints a Vector to an output stream.

� void print (ostream &s, const Array � String � &label_array) const

Prints a Vector and associated label array to an output stream.

� void print_partial (ostream &s, size_t start_index, size_t num_items) const

Prints part of a Vector to an output stream.

� void print_partial (ostream &s, size_t start_index, size_t num_items, const Array � String �
&label_array) const

Prints part of a Vector and the corresponding labels to an output stream.

� void print_aprepro (ostream &s, const Array � String � &label_array) const

Prints a Vector and associated label array to an output stream in aprepro format.

� void print_partial_aprepro (ostream &s, size_t start_index, size_t num_items, const Array � String
� &label_array) const

Prints part of a Vector and the corresponding labels to an output stream in aprepro format.

� void print_annotated (ostream &s, const Array � String � &label_array) const

Prints a Vector and associated label array in annotated form to an output stream.

� void print_tabular (ostream &s) const

Prints a Vector in tabular form to an output stream.

� void print_partial_tabular (ostream &s, size_t start_index, size_t num_items) const

Prints part of a Vector in tabular form to an output stream.

� void read (BiStream &s, Array � String � &label_array)

Reads a Vector and associated label array from a binary input stream.

� void print (BoStream &s, const Array � String � &label_array) const

Prints a Vector and associated label array to a binary output stream.

� void read (MPIUnpackBuffer &s)

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

8.107 Vector Class Template Reference 451

Reads a Vector from a buffer after an MPI receive.

� void read (MPIUnpackBuffer &s, Array � String � &label_array)

Reads a Vector and associated label array from a buffer after an MPI receive.

� void print (MPIPackBuffer &s) const

Writes a Vector to a buffer prior to an MPI send.

� void print (MPIPackBuffer &s, const Array � String � &label_array) const

Writes a Vector and associated label array to a buffer prior to an MPI send.

8.107.1 Detailed Description

template � class T � class Dakota::Vector � T �

Template class for the Dakota numerical vector.

The Dakota::Vector class is the numeric vector class. It inherits from the common vector class
Dakota::BaseVector which provides the same interface for both the STL and RW vector classes. If the
STL version of BaseVector is based on the valarray class then some basic vector operations such as + , �

are available. This class adds functionality to read/print vectors in a variety of ways

8.107.2 Constructor & Destructor Documentation

8.107.2.1 Vector (const T � p, size_t len) [inline]

Constructor which copies len entries from T � .

Assigns size values from p into array.

8.107.3 Member Function Documentation

8.107.3.1 Vector � T � & operator= (const T & ival) [inline]

Sets all elements in self to the value ival.

Assigns all values of array to ival. If STL, uses the vector assign method because there is no operator=(ival).

Reimplemented from BaseVector.

The documentation for this class was generated from the following file:

� DakotaVector.H

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

452 DAKOTA Class Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 9

DAKOTA File Documentation

9.1 keywordtable.C File Reference

file containing keywords for the strategy, method, variables, interface, and responses input specifications
from dakota.input.spec

Variables

� const struct KeywordHandler idrKeywordTable []

Initialize the keyword table as a vector of KeywordHandler structures (KeywordHandler declared in idr-
keyword.h). A null KeywordHandler structure signifies the end of the keyword table.

9.1.1 Detailed Description

file containing keywords for the strategy, method, variables, interface, and responses input specifications
from dakota.input.spec

454 DAKOTA File Documentation

9.2 main.C File Reference

file containing the main program for DAKOTA

Functions

� int main (int argc, char � argv[])

The main DAKOTA program.

Variables

� int write_precision = 10

used in ostream data output functions

9.2.1 Detailed Description

file containing the main program for DAKOTA

9.2.2 Function Documentation

9.2.2.1 int main (int argc, char � argv[])

The main DAKOTA program.

Manage command line inputs, input files, restart file(s), output streams, and top level parallel iterator
communicators. Instantiate the Strategy and invoke its run_strategy() virtual function.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

9.3 restart_util.C File Reference 455

9.3 restart_util.C File Reference

file containing the DAKOTA restart utility main program

Namespaces

� namespace Dakota

Functions

� void print_restart (int argc, char � � argv, String print_dest)

print a restart file

� void print_restart_tabular (int argc, char � � argv, String print_dest)

print a restart file (tabular format)

� void read_neutral (int argc, char � � argv)

read a restart file (neutral file format)

� void repair_restart (int argc, char � � argv, String identifier_type)

repair a restart file by removing corrupted evaluations

� void concatenate_restart (int argc, char � � argv)

concatenate multiple restart files

� int main (int argc, char � argv[])

The main program for the DAKOTA restart utility.

Variables

� int write_precision = 16

used in ostream data output functions

9.3.1 Detailed Description

file containing the DAKOTA restart utility main program

9.3.2 Function Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

456 DAKOTA File Documentation

9.3.2.1 void print_restart (int argc, char � � argv, String print_dest)

print a restart file

Usage: "dakota_restart_util print dakota.rst"

"dakota_restart_util to_neutral dakota.rst dakota.neu"

Prints all evals. in full precision to either stdout or a neutral file. The former is useful for ensuring that
duplicate detection is successful in a restarted run (e.g., starting a new method from the previous best), and
the latter is used for translating binary files between platforms.

9.3.2.2 void print_restart_tabular (int argc, char � � argv, String print_dest)

print a restart file (tabular format)

Usage: "dakota_restart_util to_pdb dakota.rst dakota.pdb"

"dakota_restart_util to_tabular dakota.rst dakota.txt"

Unrolls all data associated with a particular tag for all evaluations and then writes this data in a tabular
format (e.g., to a PDB database or MATLAB/TECPLOT data file).

9.3.2.3 void read_neutral (int argc, char � � argv)

read a restart file (neutral file format)

Usage: "dakota_restart_util from_neutral dakota.neu dakota.rst"

Reads evaluations from a neutral file. This is used for translating binary files between platforms.

9.3.2.4 void repair_restart (int argc, char � � argv, String identifier_type)

repair a restart file by removing corrupted evaluations

Usage: "dakota_restart_util remove 0.0 dakota_old.rst dakota_new.rst"

"dakota_restart_util remove_ids 2 7 13 dakota_old.rst dakota_new.rst"

Repairs a restart file by removing corrupted evaluations. The identifier for evaluation removal can be either
a double precision number (all evaluations having a matching response function value are removed) or a
list of integers (all evaluations with matching evaluation ids are removed).

9.3.2.5 void concatenate_restart (int argc, char � � argv)

concatenate multiple restart files

Usage: "dakota_restart_util cat dakota_1.rst ... dakota_n.rst dakota_new.rst"

Combines multiple restart files into a single restart database.

9.3.2.6 int main (int argc, char � argv[])

The main program for the DAKOTA restart utility.

Parse command line inputs and invoke the appropriate utility function (print_restart(),
print_restart_tabular(), read_neutral(), repair_restart(), or concatenate_restart()).

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

9.3 restart_util.C File Reference 457

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

458 DAKOTA File Documentation

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 10

Interfacing with DAKOTA as a Library

10.1 Introduction

Some users may be interested in linking the DAKOTA toolkit into another application for use as an algo-
rithm library. While this is not the primary usage model for DAKOTA, certain facilities are in place to
allow this type of integration.

As part of the normal DAKOTA build process, a libdakota.a is created and a copy of it is placed
in Dakota/lib. This library contains all source files from Dakota/src excepting the main.C and
restart_util.C main programs. This library may be linked with another application through inclusion of
-ldakota on the link line. Library and header paths may also be specified using the -L and -I compiler
options. Depending on the configuration used when building this library, other libraries for the vendor op-
timizers and vendor packages will also be needed to resolve DAKOTA symbols for DOT, NPSOL, OPT++,
SGOPT, LHS, Epetra, etc. Copies of these libraries are also placed in Dakota/lib. An XML specifica-
tion of library names and paths is also available in Dakota/dependency.

Warning:
While users are free to interface DAKOTA as a library within other software applications for their
own internal use, the GNU GPL license stipulates that any application linked with DAKOTA in this
way defines a "derivative work" and can only be distributed externally under the same GNU GPL
open source license. Refer to http://www.gnu.org/licenses/gpl.html or contact the
DAKOTA team for additional information.

Attention:
The use of DAKOTA as an algorithm library should be distinguished from the linking of simulations
within DAKOTA using the direct application interface (see DirectFnApplicInterface). In the former,
DAKOTA is providing algorithm services to another software application, and in the latter, a linked
simulation is providing analysis services to DAKOTA. It is not uncommon for these two capabilities
to be used in combination, resulting in a "sandwich" implementation.

The procedure for utilizing DAKOTA as a library within another application involves a num-
ber of steps that are similar to those used in the stand-alone DAKOTA application. The stand-
alone procedure can be viewed in the file main.C, and the differences for the library approach
are most easily explained with reference to that file. The basic steps of executing DAKOTA in-
clude instantiating the ParallelLibrary, CommandLineHandler, and ProblemDescDB objects; man-

http://www.gnu.org/licenses/gpl.html

460 Interfacing with DAKOTA as a Library

aging the DAKOTA input file (ProblemDescDB::manage_inputs()); specifying restart files and out-
put streams (ParallelLibrary::specify_outputs_restart()); and instantiating the Strategy and running it
(Strategy::run_strategy()). When using DAKOTA as an algorithm library, the operations are quite
similar, although command line information (argc, argv, and therefore CommandLineHandler) will
not in general be accessible. In particular, main.C can pass argc and argv into the ParallelLibrary
and CommandLineHandler constructors and then pass the CommandLineHandler object into
ProblemDescDB::manage_inputs() and ParallelLibrary::specify_outputs_restart(). In an algorithm library
approach, a CommandLineHandler object is not instantiated and overloaded forms of the ParallelLibrary
constructor, ProblemDescDB::manage_inputs(), and ParallelLibrary::specify_outputs_restart() are used.

The overloaded forms of these functions are as follows. For instantiation of the ParallelLibrary object, the
default constructor may be used. This constructor assumes that MPI is initialized elsewhere in the parent
application. That is, the instantiation

ParallelLibrary parallel_lib(argc, argv);

is replaced with

ParallelLibrary parallel_lib;

In the case of specifying restart files and output streams, the call to

parallel_lib.specify_outputs_restart(cmd_line_handler);

should be replaced with its overloaded form in order to pass the required information through the parameter
list

parallel_lib.specify_outputs_restart(std_output_filename, std_error_filename,
read_restart_filename, write_restart_filename, restart_evals);

where file names for standard output and error and restart read and write as well as the integer number
of restart evaluations are passed through the parameter list rather than read from the command line of the
main DAKOTA program. The definition of these attributes is performed elsewhere in the parent application
(e.g., specified in the parent application input file or GUI).

With respect to modifying ProblemDescDB::manage_inputs(), the two following sections describe differ-
ent approaches to populating data within DAKOTA’s problem description database. It is this database from
which all DAKOTA objects draw data upon instantiation.

10.2 Problem database populated through input file parsing

The simplest approach to linking an application with the DAKOTA library is to rely on DAKOTA’s normal
parsing system to populate DAKOTA’s problem database (ProblemDescDB) through the reading of an input
file. The disadvantage to this approach is the requirement for an additional input file beyond those already
required by the parent application.

In this approach, the call to

problem_db.manage_inputs(cmd_line_handler);

should be replaced with its overloaded form

problem_db.manage_inputs(dakota_input_file);

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

10.3 Problem database populated through external means 461

where the file name for the DAKOTA input is passed through the parameter list rather than read from the
command line of the main DAKOTA program. Again, the definition of the DAKOTA input file name is
performed elsewhere in the parent application (e.g., specified in the parent application input file or GUI).

10.3 Problem database populated through external means

This approach is more involved than the previous approach, but it allows the application to publish all
needed data to DAKOTA’s database directly, thereby eliminating the need for the parsing of a separate
DAKOTA input file. In this case, ProblemDescDB::manage_inputs() is not called. Rather, DataStrategy,
DataMethod, DataVariables, DataInterface, and DataResponses objects must be instantiated and popu-
lated with the desired problem data. These objects are then published to the problem database using
ProblemDescDB::insert_node(), e.g.:

// instantiate the data object
DataMethod data_method;

// set the attributes within the data object
data_method.methodName = "nond_sampling";
...

// publish the data object to the ProblemDescDB
problem_db.insert_node(data_method);

The data objects are populated with their default values upon instantiation, so only the non-default val-
ues need to be specified. Refer to the DataStrategy, DataMethod, DataVariables, DataInterface, and
DataResponses class documentation and source code for lists of attributes and their defaults.

The default strategy is single_method, which runs a single iterator on a single model, so it is not
necessary to instantiate and publish a DataStrategy object if coordination of multiple iterators and models
is not required. Rather, instantiation and insertion of a single DataMethod, DataVariables, DataInterface,
and DataResponses object is sufficient for basic DAKOTA capabilities.

Once the data objects have been published to the ProblemDescDB object, a call to

problem_db.check_input();

will perform basic database error checking.

10.4 Instantiating the strategy

With the ProblemDescDB object populated with problem data, we may now instantiate the strategy.

// instantiate the strategy
Strategy selected_strategy(problem_db);

Following strategy construction, all MPI communicator partitioning has been performed and the
ParallelLibrary instance may be interrogated for parallel configuration data. For example, the lowest level
communicators in DAKOTA’s multilevel parallel partitioning are the analysis communicators, which can
be retrieved using:

// retrieve the set of analysis communicators for simulation initialization:
// one analysis comm per ParallelConfiguration (PC), one PC per Model.
Array<MPI_Comm> analysis_comms = parallel_lib.analysis_intra_communicators();

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

462 Interfacing with DAKOTA as a Library

These communicators can then be used for initializing parallel simulation instances, where the number
of MPI communicators in the array corresponds to one communicator per ParallelConfiguration instance,
where there is one ParallelConfiguration instance per Model.

10.5 Defining the direct application interface

When employing a library interface to DAKOTA, it is frequently desirable to also use a direct interface
between DAKOTA and the simulation. There are two approaches to defining this direct interface.

10.5.1 Extension

The first approach involves extending the existing DirectFnApplicInterface class to support additional di-
rect simulation interfaces. In this case, a new interface member function can be added to Dakota/src/Direct-
FnApplicInterface.[CH] for the simulation of interest using the prototype:

int sim(const Variables& vars, const IntArray& asv, Response& response);

This simulation can then be added to the logic blocks in DirectFnApplicInterface::derived_map_ac(). In
addition, DirectFnApplicInterface::derived_map_if() and DirectFnApplicInterface::derived_map_of() can
be extended to perform pre- and post-processing tasks if desired, but this is not required.

While this approach is the simplest, it has the disadvantage that the DAKOTA library may need to be
recompiled when the simulation or its direct interface is modified. If it is desirable to maintain the inde-
pendence of the DAKOTA library from the host application, then the following derivation approach should
be employed.

10.5.2 Derivation

The second approach is to derive a new interface from DirectFnApplicInterface in order to redefine several
virtual functions. A typical derived class declaration might be

namespace SIM {

class DirectFnApplicInterface: public Dakota::DirectFnApplicInterface
{
public:

// Constructor and destructor

DirectFnApplicInterface(const ProblemDescDB& problem_db, const size_t& num_fns);
~DirectFnApplicInterface();

protected:

// Virtual function redefinitions

int derived_map_if(const DakotaString& if_name);
int derived_map_ac(const DakotaString& ac_name);
int derived_map_of(const DakotaString& of_name);

private:

// Data
}

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

10.6 Executing the strategy 463

} // namespace SIM

where the new derived class resides in the simulation’s namespace. Similar to the case of
Extension, the DirectFnApplicInterface::derived_map_ac() function is the required redefinition, and
DirectFnApplicInterface::derived_map_if() and DirectFnApplicInterface::derived_map_of() are optional.

The new derived interface object (from namespace SIM) must now be plugged into the strategy. In the
simplest case of a single model and interface, one could use

// retrieve the interface of interest
ModelList& all_models = selected_strategy.models();
Model& first_model = *all_models.begin();
Interface& interface = first_model.interface();
// plug in the new direct interface instance
interface.assign_rep(new DirectFnApplicInterface(problem_db, num_fns));
// repropagate parallel configuration data down to the new interface
first_model.reset_communicators();

In a more advanced case of multiple models and multiple interface plug-ins, one might use

// retrieve the list of Models from the Strategy
ModelList& models = selected_strategy.models();
// iterate over the Model list
for (ModelLIter ml_iter = models.begin(); ml_iter!=models.end(); ml_iter++) {
Interface& interface = (*ml_iter).interface();
if (interface.interface_type() == "application_direct") {

// plug in the new direct interface instance
interface.assign_rep(new DirectFnApplicInterface(problem_db, num_fns));
// repropagate parallel configuration data down to the new interface
(*ml_iter).reset_communicators();

}
}

New direct interface instances inherit various attributes of use in configuring the simula-
tion. In particular, the ApplicationInterface::parallelLib reference provides access to MPI
communicator data (e.g., the analysis communicators discussed in Instantiating the strategy),
ApplicationInterface::analysisDrivers provides the analysis driver names specified by the user in the in-
put file, and ApplicationInterface::analysisComponents provides additional analysis component identifiers
(such as mesh file names) provided by the user which can be used to distinguish different instances of the
same simulation interface.

10.6 Executing the strategy

Finally, with simulation configuration and plug-ins completed, we execute the strategy:

// run the strategy
selected_strategy.run_strategy();

10.7 Retrieving data after a run

After executing the strategy, final results can be obtained through the use of
Strategy::strategy_variable_results() and Strategy::strategy_response_results(), e.g.:

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

464 Interfacing with DAKOTA as a Library

// retrieve the final parameter values
const Variables& vars = selected_strategy.strategy_variable_results();

// retrieve the final response values
const Response& resp = selected_strategy.strategy_response_results();

In the case of optimization, the final design is returned, and in the case of uncertainty quantification, the
final statistics are returned.

10.8 Summary

To utilize the DAKOTA library within a parent software application, the basic steps of main.C
and the order of invocation of these steps should be mimicked from within the parent ap-
plication. Of these steps, ParallelLibrary instantiation, ProblemDescDB::manage_inputs() and
ParallelLibrary::specify_outputs_restart() require the use of overloaded forms in order to function in an
environment without direct command line access and, potentially, without file parsing. Additional optional
steps not performed in main.C include the extension/derivation of the direct interface and the retrieval of
strategy results after a run.

DAKOTA’s library mode has stabilized and is now being used successfully by several Sandia and external
simulation codes/frameworks.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 11

Performing Function Evaluations

Performing function evaluations is one of the most critical functions of the DAKOTA software. It can also
be one of the most complicated, as a variety of scheduling approaches and parallelism levels are supported.
This complexity manifests itself in the code through a series of cascaded member functions, from the top
level model evaluation functions, through various scheduling routines, to the low level details of performing
a system call, fork, or direct function invocation. This section provides an overview of the primary classes
and member functions involved.

11.1 Synchronous function evaluations

For a synchronous (i.e., blocking) mapping of parameters to responses, an iterator invokes
Model::compute_response() to perform a function evaluation. This function is all that is seen from the
iterator level, as underlying complexities are isolated. The binding of this top level function with lower
level functions is as follows:

� Model::compute_response() utilizes Model::derived_compute_response() for portions of the re-
sponse computation specific to derived model classes.

� Model::derived_compute_response() directly or indirectly invokes Interface::map().

� Interface::map() utilizes ApplicationInterface::derived_map() for portions of the mapping specific to
derived application interface classes.

11.2 Asynchronous function evaluations

For an asynchronous (i.e., nonblocking) mapping of parameters to responses, an iterator invokes
Model::asynch_compute_response() multiple times to queue asynchronous jobs and then invokes either
Model::synchronize() or Model::synchronize_nowait() to schedule the queued jobs in blocking or non-
blocking fashion. Again, these functions are all that is seen from the iterator level, as underlying complex-
ities are isolated. The binding of these top level functions with lower level functions is as follows:

� Model::asynch_compute_response() utilizes Model::derived_asynch_compute_response() for por-
tions of the response computation specific to derived model classes.

466 Performing Function Evaluations

� This derived model class function directly or indirectly invokes Interface::map() in asynchronous
mode, which adds the job to a scheduling queue.

� Model::synchronize() or Model::synchronize_nowait() utilize Model::derived_synchronize() or
Model::derived_synchronize_nowait() for portions of the scheduling process specific to derived
model classes.

� These derived model class functions directly or indirectly invoke Interface::synch() or
Interface::synch_nowait().

� For application interfaces, these interface synchronization functions are responsible for performing
evaluation scheduling in one of the following modes:

– asynchronous local mode (using ApplicationInterface::asynchronous_local_evaluations() or
ApplicationInterface::asynchronous_local_evaluations_nowait())

– message passing mode (using ApplicationInterface::self_schedule_evaluations()
or ApplicationInterface::static_schedule_evaluations() on the itera-
tor master and ApplicationInterface::serve_evaluations_synch() or
ApplicationInterface::serve_evaluations_peer() on the servers)

– hybrid mode (using ApplicationInterface::self_schedule_evaluations() or
ApplicationInterface::static_schedule_evaluations() on the iterator master and
ApplicationInterface::serve_evaluations_asynch() on the servers)

� These scheduling functions utilize ApplicationInterface::derived_map() and
ApplicationInterface::derived_map_asynch() for portions of asynchronous job launching spe-
cific to derived application interface classes, as well as ApplicationInterface::derived_synch() and
ApplicationInterface::derived_synch_nowait() for portions of job capturing specific to derived
application interface classes.

11.3 Analyses within each function evaluation

The discussion above covers the parallelism level of concurrent function evaluations serv-
ing an iterator. For the parallelism level of concurrent analyses serving a function eval-
uation, similar schedulers are involved (ForkApplicInterface::synchronous_local_analyses(),
ForkApplicInterface::asynchronous_local_analyses(), ApplicationInterface::self_schedule_analyses(),
ApplicationInterface::serve_analyses_synch(), ForkApplicInterface::serve_analyses_asynch()) to support
synchronous local, asynchronous local, message passing, and hybrid modes. Not all of the schedulers are
elevated to the ApplicationInterface level since the system call and direct function interfaces do not yet
support nonblocking local analyses (and therefore support synchronous local and message passing modes,
but not asynchronous local or hybrid modes). Fork interfaces, however, support all modes of analysis
parallelism.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Chapter 12

Recommended Practices for DAKOTA
Development

12.1 Introduction

Common code development practices can be extremely useful in multiple developer environments. Partic-
ular styles for code components lead to improved readability of the code and can provide important visual
cues to other developers.

Much of this recommended practices document is borrowed from the CUBIT mesh generation project,
which in turn borrows its recommended practices from other projects. As a result, C++ coding styles are
fairly standard across a variety of Sandia software projects in the engineering and computational sciences.

12.2 Style Guidelines

Style guidelines involve the ability to discern at a glance the type and scope of a variable or function.

12.2.1 Class and variable styles

Class names should be composed of two or more descriptive words, with the first character of each word
capitalized, e.g.:

class ClassName;

Class member variables should be composed of two or more descriptive words, with the first character of
the second and succeeding words capitalized, e.g.:

double classMemberVariable;

Temporary (i.e. local) variables are lower case, with underscores separating words in a multiple word
temporary variable, e.g.:

468 Recommended Practices for DAKOTA Development

int temporary_variable;

Constants (i.e. parameters) are upper case, with underscores separating words, e.g.:

const double CONSTANT_VALUE;

12.2.2 Function styles

Function names are lower case, with underscores separating words, e.g.:

int function_name();

There is no need to distinguish between member and non-member functions by style, as this distinction is
usually clear by context. This style convention arose from the desire to have member functions which set
and return the value of a private member variable, e.g.:

int memberVariable;
void member_variable(int a) { // set

memberVariable = a;
}
int member_variable() const { // get

return memberVariable;
}

In cases where the data to be set or returned is more than a few bytes, it is highly desirable to employ const
references to avoid unnecessary copying, e.g.:

void continuous_variables(const RealVector& c_vars) { // set
continuousVariables = c_vars;

}
const RealVector& continuous_variables() const { // get

return continuousVariables;
}

Note that it is not necessary to always accept the returned data as a const reference. If it is desired to be
able change this data, then accepting the result as a new variable will generate a copy, e.g.:

const RealVector& c_vars = model.continuous_variables(); // reference to continuousVariables cannot be changed
RealVector c_vars = model.continuous_variables(); // local copy of continuousVariables can be changed

12.2.3 Miscellaneous

Appearance of typedefs to redefine or alias basic types is isolated to a few header files (data_types.h,
template_defs.h), so that issues like program precision can be changed by changing a few lines of
typedefs rather than many lines of code, e.g.:

typedef double Real;

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

12.3 File Naming Conventions 469

xemacs is the preferred source code editor, as it has C++ modes for enhancing readability through color
(turn on "Syntax highlighting"). Other helpful features include "Paren highlighting" for matching paren-
theses and the "New Frame" utility to have more than one window operating on the same set of files (note
that this is still the same edit session, so all windows are synchronized with each other). Window width
should be set to 80 internal columns, which can be accomplished by manual resizing, or preferably, using
the following alias in your shell resource file (e.g., .cshrc):

alias xemacs "xemacs -g 81x63"

where an external width of 81 gives 80 columns internal to the window and the desired height of the window
will vary depending on monitor size. This window width imposes a coding standard since you should avoid
line wrapping by continuing anything over 80 columns onto the next line.

Indenting increments are 2 spaces per indent and comments are aligned with the code they describe, e.g.:

void abort_handler(int code)
{

int initialized = 0;
MPI_Initialized(&initialized);
if (initialized) {
// comment aligned to block it describes
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size>1)

MPI_Abort(MPI_COMM_WORLD, code);
else

exit(code);
}
else
exit(code);

}

Also, the continuation of a long command is indented 2 spaces, e.g.:

const String& iterator_scheduling
= problem_db.get_string("strategy.iterator_scheduling");

and similar lines are aligned for readability, e.g.:

cout << "Numerical gradients using " << finiteDiffStepSize*100. << "%"
<< finiteDiffType << " differences\nto be calculated by the "
<< methodSource << " finite difference routine." << endl;

Lastly, #ifdef’s are not indented (to make use of syntax highlighting in xemacs).

12.3 File Naming Conventions

In addition to the style outlined above, the following file naming conventions have been established for the
DAKOTA project.

File names for C++ classes should, in general, use the same name as the class defined by the file. Exceptions
include:

� with the introduction of the Dakota namespace, base classes which previously utilized prepended
Dakota identifiers can now safely omit the identifiers. However, since file names do not have names-
pace protection from name collisions, they retain the prepended Dakota identifier. For example, a

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

470 Recommended Practices for DAKOTA Development

class previously named DakotaModel which resided in DakotaModel.[CH], is now Dakota::Model
(class Model in namespace Dakota) residing in the same filenames. The retention of the previous
filenames reduces the possibility of multiple instances of a Model.H causing problems. Derived
classes (e.g., NestedModel) do not require a prepended Dakota identifier for either the class or file
names.

� in a few cases, it is convenient to maintain several closely related classes in a single file, in which case
the file name may reflect the top level class or some generalization of the set of classes (e.g., Dakota-
Response.[CH] files contain Dakota::Response and Dakota::ResponseRep classes, and DakotaBin-
Stream.[CH] files contain the Dakota::BiStream and Dakota::BoStream classes).

The type of file is determined by one of the four file name extensions listed below:

� .H A class header file ends in the suffix .H. The header file provides the class declaration. This file
does not contain code for implementing the methods, except for the case of inline functions. Inline
functions are to be placed at the bottom of the file with the keyword inline preceding the function
name.

� .C A class implementation file ends in the suffix .C. An implementation file contains the definitions
of the members of the class.

� .h A header file ends in the suffix .h. The header file contains information usually associated with
procedures. Defined constants, data structures and function prototypes are typical elements of this
file.

� .c A procedure file ends in the suffix .c. The procedure file contains the actual procedures.

12.4 Class Documentation Conventions

Class documentation uses the doxygen tool available from http://www.doxygen.org and employs
the JAVA-doc comment style. Brief comments appear in header files next to the attribute or function
declaration. Detailed descriptions for functions should appear alongside their implementations (i.e., in the
.C files for non-inlined, or in the headers next to the function definition for inlined). Detailed comments
for a class or a class attribute must go in the header file as this is the only option.

NOTE: Previous class documentation utilities (class2frame and class2html) used the "//-" comment style
and comment blocks such as this:

//- Class: Model
//- Description: The model to be iterated by the Iterator. Contains Variables, Interface, and Response objects.
//- Owner: Mike Eldred
//- Version: $Id: RecommendPract.dox,v 1.7 2004/05/22 00:29:02 mseldre Exp $

These tools are no longer used, so remaining comment blocks of this type are informational only and will
not appear in the documentation generated by doxygen.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

http://www.doxygen.org

Chapter 13

Instructions for Modifying DAKOTA’s
Input Specification

13.1 Modify dakota.input.spec

The master input specification resides in dakota.input.spec in $DAKOTA/src. As part of the Input Deck
Reader (IDR) build process, a soft link to this file is created in $DAKOTA/VendorPackages/idr. The mas-
ter input specification can be modified with the addition of new constructs using the following logical
relationships:

� {} for required individual specifications

� () for required group specifications

� [] for optional individual specifications

� [] for optional group specifications

��� for "or" conditionals

These constructs can be used to define a variety of dependency relationships in the input specification. It is
recommended that you review the existing specification and have an understanding of the constructs in use
before attempting to add new constructs.

Warning:
� Do not skip this step. Attempts to modify the keywordtable.C and ProblemDescDB.C files in

$DAKOTA/src without reference to the results of the code generator are very error-prone. More-
over, the input specification provides a reference to the allowable inputs of a particular executable
and should be kept in synch with the parser files (modifying the parser files independent of the
input specification creates, at a minimum, undocumented features).

� Since the Input Deck Reader (IDR) parser allows abbreviation of keywords, you must
avoid adding a keyword that could be misinterpreted as an abbreviation for a differ-
ent keyword within the same keyword handler (the term "keyword handler" refers to the
strategy_kwhandler(), method_kwhandler(), variables_kwhandler(), interface_kwhandler(), and
responses_kwhandler() member functions in the ProblemDescDB class). For example, adding

472 Instructions for Modifying DAKOTA’s Input Specification

the keyword "expansion" within the method specification would be a mistake if the keyword
"expansion_factor" already was being used in this specification.

� Since IDR input is order-independent, the same keyword may be reused multiple times in the
specification if and only if the specification blocks are mutually exclusive. For example, method
selections (e.g., dot_frcg, dot_bfgs) can reuse the same method setting keywords (e.g.,
optimization_type) since the method selection blocks are all separated by logical "or"’s. If
dot_frcg and dot_bfgswere not exclusive and could be specified at the same time, then as-
sociation of the optimization_type setting with a particular method would be ambiguous.
This is the reason why repeated specifications which are non-exclusive must be made unique,
typically with a prepended identifier (e.g., cdv_initial_point, ddv_initial_point).

13.2 Rebuild IDR

cd $DAKOTA/VendorPackages/idr
make clean
make

These steps regenerate keywordtable.C and idr-gen-code.C in the $DAKOTA/Vendor-
Packages/idr/ � canonical_build_directory � directory for use in updating keywordtable.C and
ProblemDescDB.C in $DAKOTA/src.

13.3 Update keywordtable.C in $DAKOTA/src

Do not directly replace the keywordtable.C in $DAKOTA/src using the one from idr, as there are important
differences in the kwhandler bindings. Rather, update the keywordtable.C in $DAKOTA/src using the one
from idr as a reference. Once this step is completed, it is a good idea to verify the match by diff’ing the 2
files. The only differences should be in comments, includes, and kwhandler declarations.

13.4 Update ProblemDescDB.C in $DAKOTA/src

Find the keyword handler functions (e.g., variables_kwhandler()) in $DAKOTA/Vendor-
Packages/idr/ � canonical_build_directory � /idr-gen-code.C and $DAKOTA/src/ProblemDescDB.C
which correspond to your modifications to the input specification. The idr-gen-code.C file is the result of
a code generator and contains skeleton constructs for extracting data from IDR. You will be copying over
parts of this skeleton to ProblemDescDB.C and then adding code to populate attributes within Data class
container objects.

13.4.1 Replace keyword handler declarations and counter loop

Rather than trying to update these line by line, it is recommended to delete the entire block starting with
the keyword declarations and ending at the bottom of the keyword counter loop. The declarations assign
-1 to keywords and look like this:

Int cdv_descriptor = -1;
Int cdv_initial_point = -1;

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

13.4 Update ProblemDescDB.C in $DAKOTA/src 473

They start after the line "Int cntr;". The keyword counter loop looks like this:

for (cntr=data_len; cntr--;) {
if (idr_find_id(&cdv_descriptor, cntr,

"cdv_descriptor", id_str, kw_str)) continue;
...
if (idr_find_id(&wuv_dist_upper_bounds, cntr,

"wuv_dist_upper_bounds", id_str, kw_str)) continue;
}

Once the old keyword declarations and keyword counter loop have been deleted, replace them with the
corresponding blocks from idr-gen-code.C containing the updated keyword declarations and counter loop.

13.4.2 Update keyword handler logic blocks

For the newly added or modified input specifications, copy the appropriate skeleton constructs from idr-
gen-code.C and paste them into the corresponding location in ProblemDescDB.C.

The next step is to add code to these skeletons to set data attributes within the Data class object used by the
keyword handler. At the top of the method, variables, interface, and responses keyword handlers, a Data
class object is instantiated in order to store attributes, e.g.:

DataMethod data_method;

and within the strategy keyword handler, a reference to the strategySpec data class object is used to store
attributes. Each of these data class objects is a simple container class which contains the data from a
single keyword handler invocation. Within each skeleton construct, you will extract data from the IDR data
structures and then use this data to set the corresponding attribute within the Data class.

Integer, real, and string data are extracted using the idata, rdata, and cdata arrays provided by
IDR. These arrays are indexed using a bracket operator with the keyword as an index. Lists of in-
teger, list of real, and list of string data are extracted using the ProblemDescDB::idr_get_int_table(),
ProblemDescDB::idr_get_real_table(), and ProblemDescDB::idr_get_string_table() functions, respec-
tively.

Example 1: if you added the specification:

[method_setting = <REAL>]

you would copy over

if (method_setting >= 0) {
}

from idr-gen-code.C into ProblemDescDB.C and then populate the if block with a call to set the corre-
sponding attribute within the data_method object using data extracted using the rdata array:

if (method_setting >= 0) {
data_method.methodSetting = rdata[method_setting];

}

Use of a set member function within DataMethod is not needed since the data is public. The data is
public since ProblemDescDB already provides sufficient encapsulation (ProblemDescDB::methodList,
ProblemDescDB::variablesList, ProblemDescDB::interfaceList, ProblemDescDB::responsesList, and

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

474 Instructions for Modifying DAKOTA’s Input Specification

ProblemDescDB::strategySpec are private attributes), and public access reduces the amount of code to
manage when performing input specification modifications by omitting the need to add/modify set/get
functions.

Example 2: if you added the specification

[method_setting = <LISTof><REAL>]

you would copy over

if (method_setting >= 0) {
{ Int idr_table_len;

Real** idr_table = idr_get_real_table(parsed_data, method_setting,
idr_table_len, 1, 1);

}
}

from idr-gen-code.C into ProblemDescDB.C and then populate it with a loop which extracts each entry of
the table and populates the corresponding attribute within the data_method object. The idr_table_-
len attribute is used for the loop limit and to size the data_method object.

if (method_setting >= 0) {
{ Int idr_table_len;

Real** idr_table = idr_get_real_table(parsed_data, method_setting,
idr_table_len, 1, 1);

data_method.methodSetting.reshape(idr_table_len);
for (int i = 0; i<idr_table_len; i++)

data_method.methodSetting[i] = idr_table[0][i];
}

}

Attention:
If no new data attributes have been added, but instead there are only new settings for existing attributes,
then you’re done with the database augmentation at this point (you just need to add code to use these
new settings in the places where the existing attributes are used).

13.4.3 Augment/update get_ � data_type � () functions

The final update step for ProblemDescDB.C involves extending the database retrieval functions. These
retrieval functions accept an identifier string and return a database attribute of a particular type, e.g. a
RealVector:

const RealVector& get_drv(const DakotaString& entry_name);

The implementation of each of these functions has a simple series of if-else checks which return the appro-
priate attribute based on the identifier string. For example,

if (entry_name == "variables.continuous_design.initial_point")
return (*variablesIter).continuousDesignVars;

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

13.5 Update Corresponding Data Classes 475

appears at the top of ProblemDescDB::get_drv(). Based on the identifier string, it returns the
continuousDesignVars attribute from a DataVariables object. Since there may be multiple variables
specifications, the variablesIter list iterator identifies which node in the list of DataVariables objects
is used. In particular, variablesList contains a list of all of the data_variables objects, one for
each time variables_kwhandler() has been called by the parser. The particular variables object
used for the data retrieval is managed by variablesIter, which is set in a set_db_list_nodes()
operation that will not be described here.

There may be multiple DataVariables, DataInterface, DataResponses, and/or DataMethod objects. How-
ever, only one strategy specification is currently allowed so a list of DataStrategy objects is not needed.
Rather, ProblemDescDB::strategySpec is the lone DataStrategy object.

To augment the get_ � data_type � () functions, add else blocks with new identifier strings which retrieve
the appropriate data attributes from the Data class object. The style for the identifier strings is a top-
down hierarchical description, with specification levels separated by periods and words separated with
underscores, e.g. "keyword.group_specification.individual_specification". Use
the (� listIter).attribute syntax for variables, interface, responses, and method specifications. For example,
the method_setting example attribute would be added to get_drv() as:

else if (entry_name == "method.method_name.method_setting")
return (*methodIter).methodSetting;

A strategy specification addition would not use a (� listIter) syntax, but would instead look like:

else if (entry_name == "strategy.strategy_name.strategy_setting")
return strategySpec.strategySetting;

13.5 Update Corresponding Data Classes

In this step, we extend the Data class definitions (DataStrategy, DataMethod, DataVariables, DataInterface,
and/or DataResponses) to include the new attributes referenced in Update keyword handler logic blocks
and Augment/update get_ � data_type � () functions.

13.5.1 Update the Data class header file

Add a new attribute to the private data for each of the new specifications. Follow the style guide for class
attribute naming conventions (or mimic the existing code).

13.5.2 Update the .C file

Define defaults for the new attributes in the constructor initialization list (or in the case of DataMethod,
in the body of the constructor for readability). Add the new attributes to the assign() function for use
by the copy constructor and assignment operator. Add the new attributes to the write(MPIPackBuffer&),
read(MPIUnpackBuffer&), and write(ostream&) functions, paying attention to using a consistent ordering.

13.6 Use get_ � data_type � () Functions

At this point, the new specifications have been mapped through all of the database classes. The only
remaining step is to retrieve the new data within the constructors of the classes that need it. This is done

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

476 Instructions for Modifying DAKOTA’s Input Specification

by invoking the get_ � data_type � () function on the ProblemDescDB object using the identifier string you
selected in Augment/update get_ � data_type � () functions. For example, from DakotaModel.C:

const String& interface_type = problem_db.get_string("interface.type");

passes the "interface.type" identifier string to the ProblemDescDB::get_string() retrieval function,
which returns the desired attribute from the active DataInterface object.

Warning:
Use of the get_ � data_type � () functions is restricted to class constructors, since only in class con-
structors are the data list iterators (i.e., methodIter, interfaceIter, variablesIter, and
responsesIter) guaranteed to be set correctly. Outside of the constructors, the database list nodes
will correspond to the last set operation, and may not return data from the desired list node.

13.7 Update the Documentation

Doxygen comments should be added to the Data class headers for the new attributes, and the reference
manual sections describing the portions of dakota.input.spec that have been modified should be updated.

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

Index

� Approximation
Dakota::Approximation, 86

� BiStream
Dakota::BiStream, 102

� Interface
Dakota::Interface, 209

� Iterator
Dakota::Iterator, 215

� Model
Dakota::Model, 278

� SGOPTOptimizer
Dakota::SGOPTOptimizer, 380

� Strategy
Dakota::Strategy, 407

� VarConstraints
Dakota::VarConstraints, 434

� Variables
Dakota::Variables, 441

_is_standard_registered
Dakota::JEGAEvaluator, 221

_model
Dakota::JEGAEvaluator, 222

A
Dakota::CONMINOptimizer, 128
Dakota::KrigApprox, 233

actualInterfacePointer
Dakota::ApproximationInterface, 90
Dakota::SurrLayeredModel, 421

actualModel
Dakota::SurrLayeredModel, 421

add_datapoint
Dakota::Graphics, 195

AllMergedVarConstraints
Dakota::AllMergedVarConstraints, 51

AllMergedVariables
Dakota::AllMergedVariables, 54

AllVarConstraints
Dakota::AllVarConstraints, 58

AllVariables
Dakota::AllVariables, 62

Analyzer
Dakota::Analyzer, 68

approxBuilds
Dakota::LayeredModel, 241

Approximation
Dakota::Approximation, 86

Array
Dakota::Array, 92

array
Dakota::BaseVector, 98

assign_rep
Dakota::Interface, 209
Dakota::Iterator, 216

asynchronous_local_analyses
Dakota::ForkApplicInterface, 175

asynchronous_local_evaluations
Dakota::ApplicationInterface, 81

asynchronous_local_evaluations_nowait
Dakota::ApplicationInterface, 81

autoCorrection
Dakota::LayeredModel, 241

B
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

BaseVector
Dakota::BaseVector, 97

BiStream
Dakota::BiStream, 101

BoStream
Dakota::BoStream, 104, 105

build_approximation
Dakota::SurrLayeredModel, 420

C
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

check_status
Dakota::ForkAnalysisCode, 172

close_streams
Dakota::ParallelLibrary, 346

COLINOptimizer � coliny::APPS � ::set_-
method_parameters

Dakota, 46
COLINOptimizer � coliny::Cobyla � ::set_-

method_parameters
Dakota, 46

COLINOptimizer � coliny::DIRECT � ::set_-
method_parameters

478 INDEX

Dakota, 46
COLINOptimizer � coliny::PatternSearch

� ::set_method_parameters
Dakota, 46

COLINOptimizer � coliny::PatternSearch
� ::set_runtime_parameters

Dakota, 46
COLINOptimizer � coliny::PEAreal � ::set_-

method_parameters
Dakota, 46

COLINOptimizer � coliny::SolisWets � ::set_-
method_parameters

Dakota, 46
ColinPoint, 114
compute_constraint_violation

Dakota::SurrBasedOptStrategy, 416
compute_correction

Dakota::LayeredModel, 240
compute_objective

Dakota::SurrBasedOptStrategy, 416
compute_penalty

Dakota::SurrBasedOptStrategy, 415
compute_penalty_function

Dakota::SurrBasedOptStrategy, 415
concatenate_restart

Dakota, 48
restart_util.C, 452

conminInfo
Dakota::CONMINOptimizer, 125

constraint0_evaluator
Dakota::SNLLOptimizer, 398

constraint1_evaluator
Dakota::SNLLOptimizer, 399

constraint1_evaluator_gn
Dakota::SNLLLeastSq, 392

constraint2_evaluator
Dakota::SNLLOptimizer, 399

constraint2_evaluator_gn
Dakota::SNLLLeastSq, 392

constraintMappingIndices
Dakota::CONMINOptimizer, 126
Dakota::DOTOptimizer, 169

constraintMappingMultipliers
Dakota::CONMINOptimizer, 126
Dakota::DOTOptimizer, 169

constraintMappingOffsets
Dakota::CONMINOptimizer, 126
Dakota::DOTOptimizer, 169

contains
Dakota::List, 247
Dakota::String, 410

copy
Dakota::Variables, 441

count

Dakota::List, 247
Create

Dakota::JEGAEvaluator, 220
create_plots_2d

Dakota::Graphics, 194
create_tabular_datastream

Dakota::Graphics, 195
CreateConstraintInfos

Dakota::JEGAOptimizer, 226
CreateDesignVariableInfos

Dakota::JEGAOptimizer, 225
CreateTheGA

Dakota::JEGAOptimizer, 225
CreateTheTarget

Dakota::JEGAOptimizer, 225
CT

Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 232

CtelRegexp, 129

daceMethodPointer
Dakota::ApproximationInterface, 90

Dakota, 27
COLINOptimizer � coliny::APPS � ::set_-

method_parameters, 46
COLINOptimizer � coliny::Cobyla

� ::set_method_parameters, 46
COLINOptimizer � coliny::DIRECT

� ::set_method_parameters, 46
COLINOptimizer � coliny::PatternSearch

� ::set_method_parameters, 46
COLINOptimizer � coliny::PatternSearch

� ::set_runtime_parameters, 46
COLINOptimizer � coliny::PEAreal

� ::set_method_parameters, 46
COLINOptimizer � coliny::SolisWets

� ::set_method_parameters, 46
concatenate_restart, 48
eval_id_compare, 47
eval_id_sort_fn, 47
flush, 46
operator==, 47
print_restart, 47
print_restart_tabular, 48
read_neutral, 48
repair_restart, 48
toLower, 47
toUpper, 47
vars_asv_compare, 47

Dakota::AllMergedVarConstraints, 49
Dakota::AllMergedVarConstraints

AllMergedVarConstraints, 51
Dakota::AllMergedVariables, 52
Dakota::AllMergedVariables

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

INDEX 479

AllMergedVariables, 54
Dakota::AllVarConstraints, 56
Dakota::AllVarConstraints

AllVarConstraints, 58
Dakota::AllVariables, 59
Dakota::AllVariables

AllVariables, 62
Dakota::AnalysisCode, 63
Dakota::Analyzer, 66

Analyzer, 68
evaluate_parameter_sets, 68
print_vbd, 68
var_based_decomp, 68
volumetric_quality, 68

Dakota::ANNSurf, 70
Dakota::ApplicationInterface, 72
Dakota::ApplicationInterface

asynchronous_local_evaluations, 81
asynchronous_local_evaluations_nowait,

81
duplication_detect, 80
init_serial, 78
map, 78
self_schedule_analyses, 79
self_schedule_evaluations, 80
serve_analyses_synch, 80
serve_evaluations, 79
serve_evaluations_asynch, 81
serve_evaluations_peer, 82
serve_evaluations_synch, 81
static_schedule_evaluations, 80
stop_evaluation_servers, 79
synch, 78
synch_nowait, 79
synchronous_local_evaluations, 81

Dakota::Approximation, 83
� Approximation, 86
Approximation, 86
get_approx, 87
operator=, 86

Dakota::ApproximationInterface, 88
Dakota::ApproximationInterface

actualInterfacePointer, 90
daceMethodPointer, 90
functionSurfaces, 90

Dakota::Array, 91
Array, 92
data, 94
operator T � , 93
operator(), 93
operator=, 93
operator[], 93

Dakota::BaseConstructor, 95
Dakota::BaseVector, 96

Dakota::BaseVector
array, 98
BaseVector, 97
data, 98
length, 98
operator(), 98
operator[], 97, 98
reshape, 98

Dakota::BiStream, 100
Dakota::BiStream

� BiStream, 102
BiStream, 101
operator � � , 102

Dakota::BoStream, 103
Dakota::BoStream

BoStream, 104, 105
operator � � , 105

Dakota::BranchBndStrategy, 106
Dakota::COLINApplication, 108

DoEval, 109
map_response, 110
next_eval, 110
synchronize, 110

Dakota::COLINOptimizer, 111
find_optimum, 112
set_standard_method_parameters, 112

Dakota::CommandLineHandler, 115
Dakota::CommandShell, 117
Dakota::CommandShell

flush, 118
Dakota::ConcurrentStrategy, 119
Dakota::ConcurrentStrategy

self_schedule_iterators, 120
serve_iterators, 121

Dakota::CONMINOptimizer, 122
A, 128
B, 127
C, 127
conminInfo, 125
constraintMappingIndices, 126
constraintMappingMultipliers, 126
constraintMappingOffsets, 126
CT, 127
DF, 127
G1, 127
G2, 127
IC, 128
ISC, 128
localConstraintValues, 125
MS1, 127
N1, 126
N2, 126
N3, 126
N4, 126

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

480 INDEX

N5, 126
optimizationType, 125
printControl, 125
S, 127
SCAL, 127

Dakota::DataInterface, 131
Dakota::DataMethod, 136
Dakota::DataResponses, 146
Dakota::DataStrategy, 149
Dakota::DataVariables, 153
Dakota::DDACEDesignCompExp, 159
Dakota::DDACEDesignCompExp

DDACEDesignCompExp, 160
resolve_samples_symbols, 161

Dakota::DirectFnApplicInterface, 162
Dakota::DOTOptimizer, 166

constraintMappingIndices, 169
constraintMappingMultipliers, 169
constraintMappingOffsets, 169
dotFDSinfo, 168
dotInfo, 168
dotMethod, 168
intCntlParmArray, 168
localConstraintValues, 169
optimizationType, 168
printControl, 168
realCntlParmArray, 168

Dakota::ForkAnalysisCode, 171
Dakota::ForkAnalysisCode

check_status, 172
Dakota::ForkApplicInterface, 173
Dakota::ForkApplicInterface

asynchronous_local_analyses, 175
fork_application, 174
serve_analyses_asynch, 175
synchronous_local_analyses, 175

Dakota::FSUDesignCompExp, 176
Dakota::FSUDesignCompExp

enforce_input_rules, 178
FSUDesignCompExp, 178

Dakota::FunctionCompare, 179
Dakota::FundamentalVarConstraints, 180
Dakota::FundamentalVarConstraints

FundamentalVarConstraints, 182
Dakota::FundamentalVariables, 184
Dakota::FundamentalVariables

FundamentalVariables, 188
operator==, 188

Dakota::GetLongOpt, 189
Dakota::GetLongOpt

enroll, 191
GetLongOpt, 190
parse, 191
retrieve, 191

usage, 191
Dakota::Graphics, 193

add_datapoint, 195
create_plots_2d, 194
create_tabular_datastream, 195
new_dataset, 195
show_data_3d, 195

Dakota::GridApplicInterface, 196
Dakota::HermiteSurf, 198
Dakota::HierLayeredModel, 200
Dakota::HierLayeredModel

derived_asynch_compute_response, 202
derived_compute_response, 202
derived_master_overload, 203
derived_synchronize, 203
derived_synchronize_nowait, 203
local_eval_concurrency, 203
local_eval_synchronization, 203

Dakota::Interface, 205
� Interface, 209
assign_rep, 209
get_interface, 209
Interface, 208, 209
operator=, 209
rawResponseArray, 210
rawResponseList, 210

Dakota::Iterator, 211
� Iterator, 215
assign_rep, 216
fdGradStepSize, 217
fdHessByFnStepSize, 217
fdHessByGradStepSize, 217
get_iterator, 217
Iterator, 215, 216
operator=, 216
run_iterator, 216

Dakota::JEGAEvaluator, 218
_is_standard_registered, 221
_model, 222
Create, 220
Evaluate, 221
GetContinuumVariableValues, 220
GetDiscreteVariableValues, 220
JEGAEvaluator, 220
RecordResponses, 221
SeparateVariables, 221

Dakota::JEGAOptimizer, 223
CreateConstraintInfos, 226
CreateDesignVariableInfos, 225
CreateTheGA, 225
CreateTheTarget, 225
ExtractOperatorParameters, 226
find_optimum, 226
JEGAOptimizer, 225

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

INDEX 481

LoadConstraintInfos, 226
LoadDesignVariableInfos, 226
LoadTheGA, 225
LoadTheTarget, 225
VerifyValidOperator, 226

Dakota::KrigApprox, 227
Dakota::KrigApprox

A, 233
B, 233
C, 233
CT, 232
DF, 233
G1, 233
G2, 233
IC, 234
iFlag, 234
ISC, 233
ModelApply, 232
MS1, 233
N1, 232
N2, 232
N3, 232
N4, 232
N5, 232
S, 232
SCAL, 233

Dakota::KrigingSurf, 235
Dakota::LayeredModel, 237
Dakota::LayeredModel

approxBuilds, 241
autoCorrection, 241
compute_correction, 240
force_rebuild, 241
refitInactive, 241

Dakota::LeastSq, 243
Dakota::LeastSq

LeastSq, 244
print_iterator_results, 244
run_iterator, 244

Dakota::List, 245
contains, 247
count, 247
find, 247
get, 246
index, 247
insert, 247
operator[], 248
remove, 246
removeAt, 246
sort, 247

Dakota::MARSSurf, 249
Dakota::Matrix, 251

operator=, 252
Dakota::MergedVarConstraints, 253

Dakota::MergedVarConstraints
MergedVarConstraints, 255

Dakota::MergedVariables, 256
Dakota::MergedVariables

MergedVariables, 259
Dakota::Minimizer, 260

Minimizer, 262
Dakota::Model, 264

� Model, 278
estimate_derivatives, 280
estimate_message_lengths, 280
get_model, 280
init_communicators, 279
init_serial, 279
local_eval_concurrency, 279
local_eval_synchronization, 279
manage_asv, 281
Model, 278
operator=, 279
synchronize_derivatives, 280
update_response, 280

Dakota::MPIPackBuffer, 282
Dakota::MPIUnpackBuffer, 285
Dakota::MultilevelOptStrategy, 288
Dakota::MultilevelOptStrategy

run_coupled, 289
run_uncoupled, 290
run_uncoupled_adaptive, 290

Dakota::NestedModel, 291
Dakota::NestedModel

derived_asynch_compute_response, 294
derived_compute_response, 294
derived_init_communicators, 295
derived_master_overload, 295
derived_synchronize, 295
derived_synchronize_nowait, 295
response_mapping, 296
subModel, 297
synchronize_nowait_completions, 295

Dakota::Nl2Misc, 298
Dakota::NL2SOLLeastSq, 299
Dakota::NL2SOLLeastSq

minimize_residuals, 300
Dakota::NLSSOLLeastSq, 302
Dakota::NoDBBaseConstructor, 304
Dakota::NonD, 305
Dakota::NonDLHSSampling, 308
Dakota::NonDLHSSampling

NonDLHSSampling, 309
quantify_uncertainty, 309

Dakota::NonDOptStrategy, 310
Dakota::NonDPCESampling, 312
Dakota::NonDReliability, 314
Dakota::NonDReliability

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

482 INDEX

initialize_mpp_search_data, 319
jacUToX, 321
jacXToU, 320
jacXToZ, 321
jacZToX, 321
phi, 321
phi_inverse, 321
transNataf, 321
transUToX, 319
transUToZ, 320
transXToU, 320
transXToZ, 320
transZToU, 320
transZToX, 320

Dakota::NonDSampling, 323
Dakota::NonDSampling

NonDSampling, 326
sampling_reset, 326

Dakota::NPSOLOptimizer, 327
Dakota::Optimizer, 330

multi_objective_modify, 331
multi_objective_retrieve, 332
Optimizer, 331
print_iterator_results, 331
run_iterator, 331

Dakota::ParallelConfiguration, 333
Dakota::ParallelLevel, 335
Dakota::ParallelLibrary, 338
Dakota::ParallelLibrary

close_streams, 346
init_communicators, 346
manage_outputs_restart, 346
ParallelLibrary, 345
resolve_inputs, 346
specify_outputs_restart, 345

Dakota::ParamResponsePair, 348
Dakota::ParamResponsePair

evalId, 350
ParamResponsePair, 350

Dakota::ParamStudy, 351
Dakota::ProblemDescDB, 354
Dakota::ProblemDescDB

manage_inputs, 358, 359
set_db_model_type, 359

Dakota::PStudyDACE, 360
Dakota::PStudyDACE

run_iterator, 361
Dakota::Response, 363

Response, 366
Dakota::ResponseRep, 367
Dakota::ResponseRep

read, 369–371
read_annotated, 370
read_tabular, 370

ResponseRep, 369
write, 370, 371
write_annotated, 370
write_tabular, 370

Dakota::RespSurf, 372
Dakota::rSQPOptimizer, 374
Dakota::SGOPTApplication, 376

dakota_asynch_flag, 377
DoEval, 377
next_eval, 377
synchronize, 377

Dakota::SGOPTOptimizer, 378
� SGOPTOptimizer, 380
find_optimum, 380
set_method_options, 380
sgoptApplication, 380
SGOPTOptimizer, 380

Dakota::SingleMethodStrategy, 382
Dakota::SingleModel, 384
Dakota::SNLLBase, 387
Dakota::SNLLLeastSq, 390
Dakota::SNLLLeastSq

constraint1_evaluator_gn, 392
constraint2_evaluator_gn, 392
nlf2_evaluator_gn, 392

Dakota::SNLLOptimizer, 394
constraint0_evaluator, 398
constraint1_evaluator, 399
constraint2_evaluator, 399
nlf0_evaluator, 398
nlf1_evaluator, 398
nlf2_evaluator, 398
SNLLOptimizer, 397

Dakota::SOLBase, 400
Dakota::SortCompare, 403
Dakota::Strategy, 404

� Strategy, 407
free_communicators, 408
get_strategy, 408
init_communicators, 408
initialize_graphics, 408
operator=, 407
run_iterator, 407
Strategy, 406, 407

Dakota::String, 409
contains, 410
data, 410
lower, 410
operator const char � , 410
upper, 410

Dakota::SurrBasedOptStrategy, 411
Dakota::SurrBasedOptStrategy

compute_constraint_violation, 416
compute_objective, 416

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

INDEX 483

compute_penalty, 415
compute_penalty_function, 415
hard_convergence_check, 415
run_strategy, 415
soft_convergence_check, 415

Dakota::SurrLayeredModel, 417
Dakota::SurrLayeredModel

actualInterfacePointer, 421
actualModel, 421
build_approximation, 420
derived_asynch_compute_response, 420
derived_compute_response, 419
derived_init_communicators, 421
derived_master_overload, 420
derived_synchronize, 420
derived_synchronize_nowait, 420
update_actual_model, 421

Dakota::SurrogateDataPoint, 422
Dakota::SysCallAnalysisCode, 424
Dakota::SysCallAnalysisCode

spawn_analysis, 425
spawn_evaluation, 425
spawn_input_filter, 425
spawn_output_filter, 425

Dakota::SysCallApplicInterface, 426
Dakota::TaylorSurf, 428
Dakota::VarConstraints, 430
Dakota::VarConstraints

� VarConstraints, 434
get_var_constraints, 435
manage_linear_constraints, 434
operator=, 434
VarConstraints, 433, 434

Dakota::Variables, 436
� Variables, 441
copy, 441
get_variables, 441, 442
operator=, 441
Variables, 440, 441

Dakota::VariablesUtil, 443
Dakota::Vector, 445

operator=, 447
Vector, 447

dakota_asynch_flag
Dakota::SGOPTApplication, 377

data
Dakota::Array, 94
Dakota::BaseVector, 98
Dakota::String, 410

DDACEDesignCompExp
Dakota::DDACEDesignCompExp, 160

derived_asynch_compute_response
Dakota::HierLayeredModel, 202
Dakota::NestedModel, 294

Dakota::SurrLayeredModel, 420
derived_compute_response

Dakota::HierLayeredModel, 202
Dakota::NestedModel, 294
Dakota::SurrLayeredModel, 419

derived_init_communicators
Dakota::NestedModel, 295
Dakota::SurrLayeredModel, 421

derived_master_overload
Dakota::HierLayeredModel, 203
Dakota::NestedModel, 295
Dakota::SurrLayeredModel, 420

derived_synchronize
Dakota::HierLayeredModel, 203
Dakota::NestedModel, 295
Dakota::SurrLayeredModel, 420

derived_synchronize_nowait
Dakota::HierLayeredModel, 203
Dakota::NestedModel, 295
Dakota::SurrLayeredModel, 420

DF
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

DoEval
Dakota::COLINApplication, 109
Dakota::SGOPTApplication, 377

dotFDSinfo
Dakota::DOTOptimizer, 168

dotInfo
Dakota::DOTOptimizer, 168

dotMethod
Dakota::DOTOptimizer, 168

duplication_detect
Dakota::ApplicationInterface, 80

enforce_input_rules
Dakota::FSUDesignCompExp, 178

enroll
Dakota::GetLongOpt, 191

ErrorTable, 170
estimate_derivatives

Dakota::Model, 280
estimate_message_lengths

Dakota::Model, 280
eval_id_compare

Dakota, 47
eval_id_sort_fn

Dakota, 47
evalId

Dakota::ParamResponsePair, 350
Evaluate

Dakota::JEGAEvaluator, 221
evaluate_parameter_sets

Dakota::Analyzer, 68

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

484 INDEX

ExtractOperatorParameters
Dakota::JEGAOptimizer, 226

fdGradStepSize
Dakota::Iterator, 217

fdHessByFnStepSize
Dakota::Iterator, 217

fdHessByGradStepSize
Dakota::Iterator, 217

find
Dakota::List, 247

find_optimum
Dakota::COLINOptimizer, 112
Dakota::JEGAOptimizer, 226
Dakota::SGOPTOptimizer, 380

flush
Dakota, 46
Dakota::CommandShell, 118

force_rebuild
Dakota::LayeredModel, 241

fork_application
Dakota::ForkApplicInterface, 174

free_communicators
Dakota::Strategy, 408

FSUDesignCompExp
Dakota::FSUDesignCompExp, 178

functionSurfaces
Dakota::ApproximationInterface, 90

FundamentalVarConstraints
Dakota::FundamentalVarConstraints, 182

FundamentalVariables
Dakota::FundamentalVariables, 188

G1
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

G2
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

get
Dakota::List, 246

get_approx
Dakota::Approximation, 87

get_interface
Dakota::Interface, 209

get_iterator
Dakota::Iterator, 217

get_model
Dakota::Model, 280

get_strategy
Dakota::Strategy, 408

get_var_constraints
Dakota::VarConstraints, 435

get_variables

Dakota::Variables, 441, 442
GetContinuumVariableValues

Dakota::JEGAEvaluator, 220
GetDiscreteVariableValues

Dakota::JEGAEvaluator, 220
GetLongOpt

Dakota::GetLongOpt, 190

hard_convergence_check
Dakota::SurrBasedOptStrategy, 415

IC
Dakota::CONMINOptimizer, 128
Dakota::KrigApprox, 234

iFlag
Dakota::KrigApprox, 234

index
Dakota::List, 247

init_communicators
Dakota::Model, 279
Dakota::ParallelLibrary, 346
Dakota::Strategy, 408

init_serial
Dakota::ApplicationInterface, 78
Dakota::Model, 279

initialize_graphics
Dakota::Strategy, 408

initialize_mpp_search_data
Dakota::NonDReliability, 319

insert
Dakota::List, 247

intCntlParmArray
Dakota::DOTOptimizer, 168

Interface
Dakota::Interface, 208, 209

ISC
Dakota::CONMINOptimizer, 128
Dakota::KrigApprox, 233

Iterator
Dakota::Iterator, 215, 216

jacUToX
Dakota::NonDReliability, 321

jacXToU
Dakota::NonDReliability, 320

jacXToZ
Dakota::NonDReliability, 321

jacZToX
Dakota::NonDReliability, 321

JEGAEvaluator
Dakota::JEGAEvaluator, 220

JEGAOptimizer
Dakota::JEGAOptimizer, 225

keywordtable.C, 449

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

INDEX 485

LeastSq
Dakota::LeastSq, 244

length
Dakota::BaseVector, 98

LoadConstraintInfos
Dakota::JEGAOptimizer, 226

LoadDesignVariableInfos
Dakota::JEGAOptimizer, 226

LoadTheGA
Dakota::JEGAOptimizer, 225

LoadTheTarget
Dakota::JEGAOptimizer, 225

local_eval_concurrency
Dakota::HierLayeredModel, 203
Dakota::Model, 279

local_eval_synchronization
Dakota::HierLayeredModel, 203
Dakota::Model, 279

localConstraintValues
Dakota::CONMINOptimizer, 125
Dakota::DOTOptimizer, 169

lower
Dakota::String, 410

main
main.C, 450
restart_util.C, 452

main.C, 450
main, 450

manage_asv
Dakota::Model, 281

manage_inputs
Dakota::ProblemDescDB, 358, 359

manage_linear_constraints
Dakota::VarConstraints, 434

manage_outputs_restart
Dakota::ParallelLibrary, 346

map
Dakota::ApplicationInterface, 78

map_response
Dakota::COLINApplication, 110

MergedVarConstraints
Dakota::MergedVarConstraints, 255

MergedVariables
Dakota::MergedVariables, 259

minimize_residuals
Dakota::NL2SOLLeastSq, 300

Minimizer
Dakota::Minimizer, 262

Model
Dakota::Model, 278

ModelApply
Dakota::KrigApprox, 232

MS1

Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

multi_objective_modify
Dakota::Optimizer, 331

multi_objective_retrieve
Dakota::Optimizer, 332

N1
Dakota::CONMINOptimizer, 126
Dakota::KrigApprox, 232

N2
Dakota::CONMINOptimizer, 126
Dakota::KrigApprox, 232

N3
Dakota::CONMINOptimizer, 126
Dakota::KrigApprox, 232

N4
Dakota::CONMINOptimizer, 126
Dakota::KrigApprox, 232

N5
Dakota::CONMINOptimizer, 126
Dakota::KrigApprox, 232

new_dataset
Dakota::Graphics, 195

next_eval
Dakota::COLINApplication, 110
Dakota::SGOPTApplication, 377

nlf0_evaluator
Dakota::SNLLOptimizer, 398

nlf1_evaluator
Dakota::SNLLOptimizer, 398

nlf2_evaluator
Dakota::SNLLOptimizer, 398

nlf2_evaluator_gn
Dakota::SNLLLeastSq, 392

NonDLHSSampling
Dakota::NonDLHSSampling, 309

NonDSampling
Dakota::NonDSampling, 326

operator const char �

Dakota::String, 410
operator T �

Dakota::Array, 93
operator()

Dakota::Array, 93
Dakota::BaseVector, 98

operator � �

Dakota::BoStream, 105
operator=

Dakota::Approximation, 86
Dakota::Array, 93
Dakota::Interface, 209
Dakota::Iterator, 216

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

486 INDEX

Dakota::Matrix, 252
Dakota::Model, 279
Dakota::Strategy, 407
Dakota::VarConstraints, 434
Dakota::Variables, 441
Dakota::Vector, 447

operator==
Dakota, 47
Dakota::FundamentalVariables, 188

operator � �
Dakota::BiStream, 102

operator[]
Dakota::Array, 93
Dakota::BaseVector, 97, 98
Dakota::List, 248

optimizationType
Dakota::CONMINOptimizer, 125
Dakota::DOTOptimizer, 168

Optimizer
Dakota::Optimizer, 331

ParallelLibrary
Dakota::ParallelLibrary, 345

ParamResponsePair
Dakota::ParamResponsePair, 350

parse
Dakota::GetLongOpt, 191

phi
Dakota::NonDReliability, 321

phi_inverse
Dakota::NonDReliability, 321

print_iterator_results
Dakota::LeastSq, 244
Dakota::Optimizer, 331

print_restart
Dakota, 47
restart_util.C, 451

print_restart_tabular
Dakota, 48
restart_util.C, 452

print_vbd
Dakota::Analyzer, 68

printControl
Dakota::CONMINOptimizer, 125
Dakota::DOTOptimizer, 168

quantify_uncertainty
Dakota::NonDLHSSampling, 309

rawResponseArray
Dakota::Interface, 210

rawResponseList
Dakota::Interface, 210

read

Dakota::ResponseRep, 369–371
read_annotated

Dakota::ResponseRep, 370
read_neutral

Dakota, 48
restart_util.C, 452

read_tabular
Dakota::ResponseRep, 370

realCntlParmArray
Dakota::DOTOptimizer, 168

RecordResponses
Dakota::JEGAEvaluator, 221

refitInactive
Dakota::LayeredModel, 241

remove
Dakota::List, 246

removeAt
Dakota::List, 246

repair_restart
Dakota, 48
restart_util.C, 452

reshape
Dakota::BaseVector, 98

resolve_inputs
Dakota::ParallelLibrary, 346

resolve_samples_symbols
Dakota::DDACEDesignCompExp, 161

Response
Dakota::Response, 366

response_mapping
Dakota::NestedModel, 296

ResponseRep
Dakota::ResponseRep, 369

restart_util.C, 451
concatenate_restart, 452
main, 452
print_restart, 451
print_restart_tabular, 452
read_neutral, 452
repair_restart, 452

retrieve
Dakota::GetLongOpt, 191

run_coupled
Dakota::MultilevelOptStrategy, 289

run_iterator
Dakota::Iterator, 216
Dakota::LeastSq, 244
Dakota::Optimizer, 331
Dakota::PStudyDACE, 361
Dakota::Strategy, 407

run_strategy
Dakota::SurrBasedOptStrategy, 415

run_uncoupled
Dakota::MultilevelOptStrategy, 290

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

INDEX 487

run_uncoupled_adaptive
Dakota::MultilevelOptStrategy, 290

S
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 232

sampling_reset
Dakota::NonDSampling, 326

SCAL
Dakota::CONMINOptimizer, 127
Dakota::KrigApprox, 233

self_schedule_analyses
Dakota::ApplicationInterface, 79

self_schedule_evaluations
Dakota::ApplicationInterface, 80

self_schedule_iterators
Dakota::ConcurrentStrategy, 120

SeparateVariables
Dakota::JEGAEvaluator, 221

serve_analyses_asynch
Dakota::ForkApplicInterface, 175

serve_analyses_synch
Dakota::ApplicationInterface, 80

serve_evaluations
Dakota::ApplicationInterface, 79

serve_evaluations_asynch
Dakota::ApplicationInterface, 81

serve_evaluations_peer
Dakota::ApplicationInterface, 82

serve_evaluations_synch
Dakota::ApplicationInterface, 81

serve_iterators
Dakota::ConcurrentStrategy, 121

set_db_model_type
Dakota::ProblemDescDB, 359

set_method_options
Dakota::SGOPTOptimizer, 380

set_standard_method_parameters
Dakota::COLINOptimizer, 112

sgoptApplication
Dakota::SGOPTOptimizer, 380

SGOPTOptimizer
Dakota::SGOPTOptimizer, 380

show_data_3d
Dakota::Graphics, 195

SNLLOptimizer
Dakota::SNLLOptimizer, 397

soft_convergence_check
Dakota::SurrBasedOptStrategy, 415

sort
Dakota::List, 247

spawn_analysis
Dakota::SysCallAnalysisCode, 425

spawn_evaluation

Dakota::SysCallAnalysisCode, 425
spawn_input_filter

Dakota::SysCallAnalysisCode, 425
spawn_output_filter

Dakota::SysCallAnalysisCode, 425
specify_outputs_restart

Dakota::ParallelLibrary, 345
static_schedule_evaluations

Dakota::ApplicationInterface, 80
stop_evaluation_servers

Dakota::ApplicationInterface, 79
Strategy

Dakota::Strategy, 406, 407
subModel

Dakota::NestedModel, 297
synch

Dakota::ApplicationInterface, 78
synch_nowait

Dakota::ApplicationInterface, 79
synchronize

Dakota::COLINApplication, 110
Dakota::SGOPTApplication, 377

synchronize_derivatives
Dakota::Model, 280

synchronize_nowait_completions
Dakota::NestedModel, 295

synchronous_local_analyses
Dakota::ForkApplicInterface, 175

synchronous_local_evaluations
Dakota::ApplicationInterface, 81

toLower
Dakota, 47

toUpper
Dakota, 47

transNataf
Dakota::NonDReliability, 321

transUToX
Dakota::NonDReliability, 319

transUToZ
Dakota::NonDReliability, 320

transXToU
Dakota::NonDReliability, 320

transXToZ
Dakota::NonDReliability, 320

transZToU
Dakota::NonDReliability, 320

transZToX
Dakota::NonDReliability, 320

update_actual_model
Dakota::SurrLayeredModel, 421

update_response
Dakota::Model, 280

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

488 INDEX

upper
Dakota::String, 410

usage
Dakota::GetLongOpt, 191

var_based_decomp
Dakota::Analyzer, 68

VarConstraints
Dakota::VarConstraints, 433, 434

Variables
Dakota::Variables, 440, 441

vars_asv_compare
Dakota, 47

Vector
Dakota::Vector, 447

VerifyValidOperator
Dakota::JEGAOptimizer, 226

volumetric_quality
Dakota::Analyzer, 68

write
Dakota::ResponseRep, 370, 371

write_annotated
Dakota::ResponseRep, 370

write_tabular
Dakota::ResponseRep, 370

Generated on Thu Dec 23 14:56:53 2004 for DAKOTA by Doxygen

	DAKOTA Developers Manual
	Introduction
	Overview of DAKOTA
	Services
	Additional Resources

	DAKOTA Namespace Index
	DAKOTA Namespace List

	DAKOTA Hierarchical Index
	DAKOTA Class Hierarchy

	DAKOTA Class Index
	DAKOTA Class List

	DAKOTA File Index
	DAKOTA File List

	DAKOTA Page Index
	DAKOTA Related Pages

	DAKOTA Namespace Documentation
	

	DAKOTA Class Documentation
	AllMergedVarConstraints Class Reference
	AllMergedVariables Class Reference
	AllVarConstraints Class Reference
	AllVariables Class Reference
	AnalysisCode Class Reference
	Analyzer Class Reference
	ANNSurf Class Reference
	ApplicationInterface Class Reference
	Approximation Class Reference
	ApproximationInterface Class Reference
	Array Class Template Reference
	BaseConstructor Struct Reference
	BaseVector Class Template Reference
	BiStream Class Reference
	BoStream Class Reference
	BranchBndStrategy Class Reference
	COLINApplication Class Template Reference
	COLINOptimizer Class Template Reference
	ColinPoint Class Reference
	CommandLineHandler Class Reference
	CommandShell Class Reference
	ConcurrentStrategy Class Reference
	CONMINOptimizer Class Reference
	CtelRegexp Class Reference
	DataInterface Class Reference
	DataMethod Class Reference
	DataResponses Class Reference
	DataStrategy Class Reference
	DataVariables Class Reference
	DDACEDesignCompExp Class Reference
	DirectFnApplicInterface Class Reference
	DOTOptimizer Class Reference
	ErrorTable Struct Reference
	ForkAnalysisCode Class Reference
	ForkApplicInterface Class Reference
	FSUDesignCompExp Class Reference
	FunctionCompare Class Template Reference
	FundamentalVarConstraints Class Reference
	FundamentalVariables Class Reference
	GetLongOpt Class Reference
	Graphics Class Reference
	GridApplicInterface Class Reference
	HermiteSurf Class Reference
	HierLayeredModel Class Reference
	Interface Class Reference
	Iterator Class Reference
	JEGAEvaluator Class Reference
	JEGAOptimizer Class Reference
	KrigApprox Class Reference
	KrigingSurf Class Reference
	LayeredModel Class Reference
	LeastSq Class Reference
	List Class Template Reference
	MARSSurf Class Reference
	Matrix Class Template Reference
	MergedVarConstraints Class Reference
	MergedVariables Class Reference
	Minimizer Class Reference
	Model Class Reference
	MPIPackBuffer Class Reference
	MPIUnpackBuffer Class Reference
	MultilevelOptStrategy Class Reference
	NestedModel Class Reference
	Nl2Misc Struct Reference
	NL2SOLLeastSq Class Reference
	NLSSOLLeastSq Class Reference
	NoDBBaseConstructor Struct Reference
	NonD Class Reference
	NonDLHSSampling Class Reference
	NonDOptStrategy Class Reference
	NonDPCESampling Class Reference
	NonDReliability Class Reference
	NonDSampling Class Reference
	NPSOLOptimizer Class Reference
	Optimizer Class Reference
	ParallelConfiguration Class Reference
	ParallelLevel Class Reference
	ParallelLibrary Class Reference
	ParamResponsePair Class Reference
	ParamStudy Class Reference
	ProblemDescDB Class Reference
	PStudyDACE Class Reference
	Response Class Reference
	ResponseRep Class Reference
	RespSurf Class Reference
	rSQPOptimizer Class Reference
	SGOPTApplication Class Reference
	SGOPTOptimizer Class Reference
	SingleMethodStrategy Class Reference
	SingleModel Class Reference
	SNLLBase Class Reference
	SNLLLeastSq Class Reference
	SNLLOptimizer Class Reference
	SOLBase Class Reference
	SortCompare Class Template Reference
	Strategy Class Reference
	String Class Reference
	SurrBasedOptStrategy Class Reference
	SurrLayeredModel Class Reference
	SurrogateDataPoint Class Reference
	SysCallAnalysisCode Class Reference
	SysCallApplicInterface Class Reference
	TaylorSurf Class Reference
	VarConstraints Class Reference
	Variables Class Reference
	VariablesUtil Class Reference
	Vector Class Template Reference

	DAKOTA File Documentation
	keywordtable.C File Reference
	main.C File Reference
	restart_util.C File Reference

	Interfacing with DAKOTA as a Library
	Introduction
	Problem database populated through input file parsing
	Problem database populated through external means
	Instantiating the strategy
	Defining the direct application interface
	Executing the strategy
	Retrieving data after a run
	Summary

	Performing Function Evaluations
	Synchronous function evaluations
	Asynchronous function evaluations
	Analyses within each function evaluation

	Recommended Practices for DAKOTA Development
	Introduction
	Style Guidelines
	File Naming Conventions
	Class Documentation Conventions

	Instructions for Modifying DAKOTA's Input Specification
	Modify dakota.input.spec
	Rebuild IDR
	Update keywordtable.C in $DAKOTA/src
	Update ProblemDescDB.C in $DAKOTA/src
	Update Corresponding Data Classes
	Use get_<data_type>() Functions
	Update the Documentation

